Solutions to MATH342 (Number Theory) January 2005 examination

Question 1.

(i) The number of positive multiples of an integer k£ > 0 which are < n is clearly [%]. To count
the power of p dividing n!, since p is prime, it is enough to count the powers of p dividing
1,2,3,...,n and add these powers up. Now, the number of multiples of p among 1,2,3,...,n
is |2|. Each multiple of p? among 1,2,3,...,n gives an additional power of p dividing into n!,

giving [%] + [1%] so far. Continuing in this way we get that the total power of p is as in the

given formula.
4 marks. Seen in lectures.

(ii) Let 80! = 2% 5% ¢; where c; is not a multiple of 2 or 5. Then the power of 10 dividing 60! is
clearly the smaller of a; and b;. Working out a1 we get [%] + [%] + [88—0] + [%] + [%] + [%] ;

since all subsequent terms are zero. This gives a; =40+ 20+10+5+ 2+ 1 = 78. Working

out b; we get [%—0] + [%], since all subsequent terms are zero. This gives by = 16 + 3 = 19. So,

there are min(78,19) = 19 zeros at the end of 80!.
4 marks. Similar to exercise sheet question.

Similarly, let 35! = 2%25%¢, where ¢y is not a multiple of 2 or 5. Working out ay we get
[%] + [%] + [3‘75] + [%] + [g—g} , since all subsequent terms are zero. This gives ag = 17 + 8 +

4+ 2+ 1 = 32. Working out by we get [%] + [%], since all subsequent terms are zero. This
gives by =7+ 1 =28.

Similarly, let 45! = 2953 where c¢3 is not a multiple of 2 or 5. Working out az we
get [%] + [%] + [48—5] + [%] + [g—g] , since all subsequent terms are zero. This gives az =

224+ 114542+ 1 = 41. Working out b3 we get [%] + [%], since all subsequent terms are zero.
This gives b3 =9 + 1 = 10.

It follows that < gg ) = 80!/(35! 45!) = 291501, /(2925525293503 ¢3) = 2945b4 ¢y, where ¢y is
not a multiple of 2 or 5, and where a4y = a1 —as —a3 =78 —-32—41=5and by =b; —by — b3 =
19 — 8 — 10 = 1. So, there is min(5,1) = 1 zero at the end of ( gg )

6 marks. Similar to exercise sheet question.

(iii) The power of 2 is [2] + [2%] + ... and the power of 5 is [2] + [5%] +.... Clearly, each term
of the second sum is < the corresponding term of the first sum, and the first terms [3] > [Z]
so long as n > 2. So, the power of 2 > the power of 5.

2 marks. Unseen.

(iv) Write n! = 245%c, where ¢ is not a multiple of 2 or 5; from (iii) we know that a > b, giving:
n! = 297°10%c, with a —b > 0, so that there are b zeros and n!/10° is even; hence the last nonzero
digit is even.

The power of 5 in (5n)! is [%"] + [g—’;] + [g—?] +...=n+[3]+ [5"—2] + ... = n+ the power
of 5 in n!. Since the power of 2 is always at least the power of 5, it follows that the number of
zeros at the end of each decimal expression is the same as the power of 5; hence the number of
zeros at the end of the decimal expression of (5n)! is n more than that of n!.

4 marks. Unseen.



Question 2.
(i) Fermat’s Theorem states that:
(a) If p is prime and p does not divide a then a?~! =1 (mod p).
(b) For any a (whether p divides a or not), we have: a? = a (mod p).

Proof.

(a) Consider a,2a,...,(p —1)a (*). For any j in the range 1 < j < (p — 1), we have p/ j.
Since also p/f a, it follows that p/ ja; that is, none of the numbers in (*) is congruent to 0
(mod p). Also, imagine ia = ja (mod p) for i # j (say, i+ > j) and 1 < 4,5 < (p — 1);
then (i — j)a = 0 (mod p) and so p | ( — j)a; but pf (i — j), since 0 < i — j < p, and so
pla, a contradiction. Hence ia # ja whenever i # j, 1 < 4,5 < (p —1). It follows that the
numbers: a,2a,...,(p — 1)a are all distinct mod p and none are 0 mod p. For each of the p — 1
numbers a, 2a, ..., (p — 1)a there are only p — 1 possibilities mod p: 1,2,...,p — 1. It follows
that {a,2a,...,(p — 1)a} is the same set mod p as {1,2,...,p — 1}, possibly with a different
order. Hence a-2a-...-(p—1)a=1-2-...-(p—1); that is: (p — 1)!a? ! = (p — 1)! (mod p).
Clearly ((p —1)!,p) = 1 [since each of 1,...,p — 1 is coprime to p], and so a?~! = 1 (mod p), as
required.

(b) If p} a, then we have already shown a? ' = 1 (mod p). Multiplying both sides by a gives
a? = a (mod p). If p | a then a? = a (mod p) is trivially true, since a? = 0 and a = 0 (mod p).
5 marks. Bookwork from lectures.

By Fermat’s Theorem, since 5 f 2, we have: 2* = 1 (mod 5) and so 275 = (2%)18.23 = 118.8 =
3 (mod 5). Similarly, since 5/ 3, we have: 3* =1 (mod 5) and so 37 = (3%)18.33 = 118.27 =
2 (mod 5). Hence, 27 + 37 =3 +2 =5 =0 (mod 5), giving that 27 + 37 is divisible by 5.
3 marks. Seen similar on ezercise sheet.

(ii) Let n = r* + 1. If 5 r then by Fermat’s Theorem, r* = 1 (mod 5), so that n = r* + 1 =
1+1=2 (mod 5). If 5|r then 7 = 0 (mod 5), so that n =r* + 1 =0* + 1 =1 (mod 5). In all
cases, n Z 0 (mod 5); that is: n is never divisible by 5.

Imagine n were a multiple of 13, so that n = 74 +1 =0 (mod 13). Then 7* = —1 (mod 13),
and on cubing both sides: r'?2 = (=1)> = —1 (mod 13). But this contradicts both the case
when 13 f r [since then by Fermat’s Theorem r'?2 = 1 (mod 13)] and the case when 13|r [since
then r'?2 == 0'2 = 0 (mod 13)]. Hence it is not possible for n to be a multiple of 13.

6 marks. Seen similar on a exercise sheet.

Imagine n = r* + 1 were a multiple of p, where p is a prime of the form p = 4m + 3.
Then n = r* + 1 = 0 (mod p). Then r* = —1 (mod p). If pJr then by Fermat’s Theorem,
rP~! = 1 (mod p); that is: 7*™*2 = 1 (mod p). But, since r* = —1 (mod p), we also have:
rim+2 = (pHmp2 = (—1)™r? = 472 (mod p); combining these last two equations gives that
+72 = 1 (mod p), and so on squaring both sides: r* = 1 (mod p), which contradicts r* =
—1 (mod p). If p|r then r* = 0* = 0 (mod p), which immediately contradicts 7* = —1 (mod p).
In either case, we have a contradiction, so that is not possible for n to be a multiple of p.

3 marks. Unseen.

(iii) Imagine n = r%¥ 4 1 were a multiple of p, where p is a prime of the form p = 4mk + 2k + 1.
Then n = r?* 4+ 1 = 0 (mod p). Then 7?) = —1 (mod p). If pJr then by Fermat’s Theorem,

rP~1 = 1 (mod p); that is: r*™*+2% =1 (mod p). But, since r?* = —1 (mod p), we also have:
pAmkt2k = (p2k)2mp2k = (_1)2mp2k = 2k (mod p); combining these last two equations gives
that 72* = 1 (mod p), which contradicts 72¥ = —1 (mod p). If p|r then r2¥ = 0%* = 0 (mod p),
which immediately contradicts ¥ = —1 (mod p). In either case, we have a contradiction, so

that is not possible for n to be a multiple of p.
3 marks. Unseen.



Question 3.
(i) Miller’s test on n to base b (where n be an odd positive integer and b coprime to n). We use
(z) to denote the least positive residue of  mod n.

Step 1. Let k =n — 1, (b¥) = r. If r = 1 then continue, otherwise n fails the test.

While £ is even and r = 1 then repeat the following.

Step 2. Replace k by k/2, and replace r by the new value of (b*).

When £ fails to be even or r fails to be 1:

If r=1or n— 1 then n passes the test.

If r #1 and r # n — 1 then n fails the test.

5 marks. From lectures.

If n = p, prime, then #»~! = 1 (mod p) by Fermat’s Theorem, and so n passes Step 1. At
any application of Step 2, we have k even and ¥ = 1 (mod p), so that (b¥/2)2 = b¥ = 1 (mod p),
and so b¥/2 = +£1 = 1 or p — 1 (mod p) [using the fact that, for p prime, 22 = 1 has only the
solutions z = +1 (mod p)]. If b¥/2 = p — 1 (mod p) or k/2 is odd, then p passes Miller’s test to
base b, otherwise Step 2 is repeated. Therefore, when Miller’s test terminates, p will pass.

4 marks. From lectures.

(ii) Check: (19,169) = 1, so that Miller’s Test can be applied on 169 to base 19. First compute:
192 = 6859 = 99 (mod 169), so that 19% = (193)2 = 992 = 9801 = —1 (mod 169). This
gives, 191691 = 19168 = (196)28 = (—1)?8 = 1, so that 169 is a pseudoprime to the base 19
(given that 169 = 13 - 13 and so is composite). The exponent 168 is even, so we continue to
compute 19%* = (196) = (—1)!4 = 1. The exponent 84 is still even, so we continue to compute

1942 = (19%)" = (—1)" = —1 = 168. The residue is no longer 1, and so we stop. We see that the
last residue is 1 or 169 — 1, so that 169 passes Miller’s Test to base 19. Thus, 169 is a strong
pseudoprime to base 19.

Check: (5,217) = 1, so that Miller’s Test can be applied on 217 to base 5. First compute:
55 = 15625 = 1 (mod 217), so that 5217~1 = 5216 = (56)36 = 136 =1 (mod 217), so that 217 is
a pseudoprime to the base 5 (given that 217 = 7 - 31 and so is composite). The exponent 216
is even, so we continue to compute 5% = (56)!® = 118 = 1. The exponent 108 is even, so we
continue to compute 5°* = (56)? = 1° = 1. The exponent 54 is even, so we continue to compute
527 = (56)*.5% = 1*.125 = 125. This is neither 1 nor 217 — 1, so 217 fails Miller’s Test to base 5.
Thus, 217 is not a strong pseudoprime to base 5.

Check: (2,105) = 1, so that Miller’s Test can be applied on 105 to base 2. First compute:
212 = 4096 = 1 (mod 105), so that 2105—1 = 2104 = (212)8. 98 = 18 . 9256 = 46 (mod 105), giving
that 105 is not a pseudoprime to base 2. Miller’s Test is immediately failed at Step 1, so that
105 is not a strong pseudoprime to base 2.

8 marks. Seen similar on ezercise sheet.

(iii) Let by = n — b. First note that by = 0 — b = —b (mod n). Since n passes Step 1 to
base b, we have b»~! = 1 and so b7 ! = (—b)"~! =1 (mod n) also, since n — 1 is even; thus,
n passes Step 1 to base by also. Imagine that n fails some application of Step 2 to base b1, so
that o7~ ! = bgn_l)p = b =1 (mod n) and ¥ # £1 (mod n) for some k. But then
el =pnD2 = = b2’c =1 (mod n) [since b = —b; and the exponenents are all even], and
b* = (=by)¥ = £b} # £1 (mod n), contradicting the given fact that n passes Miller’s Test on n
to base b. Hence n passes Miller’s Test on n to base b;.

3 marks. Unseen.



Question 4.
(i) All congruences are mod m in what follows. Clearly
=1, ro=10r; =10, r3 =101y = 102, etc.,

and generally 711 = 107. Tt is also clear that the calculation of the decimal places ¢; repeats
when one of the remainders r; becomes equal to a previous remainder 7;. I claim that when
this happens, i = 1. Proof: If i > 1 and 744 = r; (k > 1) is the first repeat then 107(;;4)—1 =
Tivk = T3 = 10r;_1 and 10 can be cancelled since 2/m and 5/ m, so that r;_14, = 7—1 and
consequently these remainders are equal since both are between 1 and m—1. But this contradicts
the assumption that r;; = r; is the first repeat.

Thus recurrence starts with rp11 =r1 = 1, i.e. ¢1 = gx+1,92 = qr+2 and so on. Thus k is
the smallest number such that 10 = 1, i.e. ord,,10 = k, which is the length of the period.
7 marks. Bookwork from lectures.

(i) ¥ = 1 (mod mn) <= z* =1 (mod m) and z*¥ = 1 (mod n) [since (m,n) = 1] <
ordy,z|k and ord,z|k <= k is a common multiple of ord,,z and ord,z <= k is a multiple
of [ord,,z,ord,z]. Hence, ord,,,z = [ord,,z,ord,z], as required.

2 marks. Seen similar in lectures.

(iii) As usual, ord,,10 is the smallest & > 0 for which 10* = 1 (mod m). In each case, by (i), this
is the same as the decimal period length of % We can also use the general result that ord,,a is
always a factor of ¢(m) for any a, m.

For m = 7, we know that ord710 is a factor of ¢(7) = 6, and so the only possibilities are
1,2,3,6. Compute powers of 10 mod 7: 10! = 3, 102 = 2, 10®> = 6 (mod 7), which is enough to
exclude 1,2, 3 as possible values of ord;10, so that ord;10 = 6, which must be the length of the
decimal period of %

For m = 31, we know that ords; 10 is a factor of ¢(31) = 30, and so the only possibilities
are 1,2, 3,5,6,10,15,30. Compute powers of 10 mod 31: 10! = 10, 102 = 7, 10° = 8, 10* = 18,
10° = 25, 108 = 2, 101 = (10%)2 = 625 = 5, 10'5 = 10°- 101 = 25 -5 = 125 = 1 (mod 31),
which is enough to exclude 1,2,3,5,6,10 as possible values of ords;10, so that ords; 10 = 15,
which must be the length of the decimal period of 3%

For m = 217 = 7- 31, we have from part (ii) that ords;710 is the least common multiple
of ord710 and ords; 10; that is: the least common multiple of 6 and 15, which is 30, which is
therefore the length of the decimal period of 2}—7
6 marks. Seen similar in lectures.

(iv) From lectures, write a = p{'p3?...p;* and b = pophz .. .pzk, where p1,...,pg are distinct

primes each a; > 0,b; > 0 and, for each i, we have a; > 0 or b; > 0. Then, from lectures,

(CL, b) _ prlnin(m,fn)p;nin(ag,bg) B 'p;cninFak \bk) and [(1, b] _ prlnax(.al ,bl)pIQna.X(aQ,bg) B pmax(ak ,bk)’ so that:
(CI,, b) [a’ b] _ prlnln(al,b1)+max(a1,bl)p;mn(az,bg)—kmax(az ,b2) N .pznln(ak,bk)—kmax(ak,bk). Also:

ab = pd1Tbipaath> .pZ’“Lbk. These are the same, since for all 7, min(a;, b;) + max(a;, b;) = a;+b;.

2 marks. Bookwork from lectures.

(v) The length of the decimal period of piq is ordp,10, which by (ii) is ord,;10 = [ord,10, ord,10].
We also know that ord,10|¢(p) and ord,10|¢(g). If ord,10 = ¢(p) = p — 1 and ord,10 = ¢(q) =
g — 1 then ordp,10 = [ord,10, 0rd,10] = ord,10 ord,10/(ord,10,0rd,10) = (p — 1)(¢ — 1)/(p —
1,g—1) < (p—1)(¢—1)/2, sincep—1and g—1 are even and (p—1,¢—1) > 2. If ord,10 # ¢(p)
or ordy10 # ¢(g) then ord,10 < ¢(p)/2 or ordy10 < ¢(q)/2, so that ordy,10 = [ord,10, 0rd,10] =
ord,10 ord,10/(ord,10, 0rd410) < ord,10 ord,10 < (p — 1)(¢ — 1)/2. In either case, we have the
period length bounded above by (p — 1)(¢ — 1)/2, as required.

3 marks. Unseen.



Question 5.

(i) ‘g is a primitive root mod n’ means that the order of g mod n is ¢(n), i.e. the smallest & > 0
for which g =1 mod n is k = ¢(n).

2 marks. From lectures.

(ii) Let n = ab where a > 2,b > 2 and (a,b) = 1. Let (g,n) = 1; that is: (g,ab) = 1. First show
that ¢(a) is even. Proof: Since a > 2, we must have either a = 2%,k > 2 or a has an odd prime
factor. If a = 2F,k > 2, we have ¢(a) = 2¥~! which is even. If @ has an odd prime factor p,
then the formula for ¢(a) has an even factor p — 1. In either case, ¢(a) is even. Similarly, ¢(b)
is even. Now note the standard result that (g,ab) = 1 = (g,a) = 1, and so ¢ = 1 mod a,
by Euler’s Theorem. Hence

g0z _ (g9(@) 2 1002 moq g,

Note that here we use the fact that ¢(b) is even, so that the power on the right is an integer.
Similarly by interchanging a and b we get

g#@e/2 — (o) "D Z 1012 moq o,
using the fact that ¢(a) is even. Hence ¢g?(®?(®)/2 = 1 mod a and mod b, and hence mod ab = n
since (a,b) = 1 (Standard result: if the same congruence holds mod a and mod b then it holds
mod lcm(a, b), which here is ab since (a,b) = 1.) Using (a,b) = 1 again, and the general fact
that this implies ¢(a)$(b) = H(n), we find g¢(™/2 = 1 mod n. It follows that every g has order
at most ¢(n)/2 mod n, and so there does not exist g of order ¢(n); that is, there does not exist
a primitive root mod n.
7 marks. Bookwork from lectures.

(iii) Working out powers of 3 mod 38 gives
k|1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
3*mod38 |3 9 27 5 15 7 21 25 37 35 29 11 33 23 31 17 13 1

This verifies that ordss3 = 18 = ¢(38) and so 3 is a primitive root mod 38.
4 marks. Seen similar in ezercises.
(a) From table, 7 = 3%,25 = 3% (mod 38) so the given equation 7% = 25 (mod 38) becomes

35 = 3% (mod 38) © 62 =8 (mod 18)

by the general results that, for a primitive root ¢ mod n: g = ¢* (mod n) < a = b (mod $(n)).
But the equation 6z = 8 (mod 18) has no solutions, since (6,18) = 6 which is not a factor of 8;
hence the given equation also has no solutions.

3 marks. Seen similar in ezercises.

(b) Note that y* = 23 (mod 38) implies that (i, 38) = 1 since any common factor would also
have to divide the r.h.s. 23 of the congruence, and so would be a common factor of 38,23, which
are coprime. Hence y = 3% (mod 38) for some z (since 3 is a primitive root). Also 3'* = 23
from the table. The given congruence turns into

317 = 314 (mod 38) < 4z =14 (mod 18).

by the same general result used in part (a). This gives 2z = 7 (mod 9); multiplying both sides
by 5 (which is the inverse of 2 mod 9) gives: z = 35 =8 (mod 9), i.e. z = 8,17 (mod 18) which,
from the table, gives: y = 25,13 mod 38.

4 marks. Seen similar in ezercises.



Question 6.

(i) d(n) = the number of the divisors of n which are > 1. o(n) = the sum of the divisors of n
which are > 1.

p? has divisors 1,p,p?,...p% !, p%, of which there are a + 1, so that d(p®) = a + 1 and o(p?) =
l+p+p*+...p°= (" =1)/(p— D). 1 "
Writing n = p{* ... pp*, we have: d(n) = (n1 +1)...(ngx +1) and o(n) = pl;ltfl ...p’“:kffl

4 marks. From lectures.

(ii) Here is a table of values of o(p®) for small p and a. Since all rows and columns are strictly

increasing, any further entries would be greater than 48 and so are irrelevant.
D —
al 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
1 3 4 6 8 12 14 18 20 24 30 32 38 42 44 48

2 7T 13 31 57
3| 156 40 156

41 31 121

5| 63

6 | 127

Now the following give all the ways of writing 48 as a product of entries in different columns
of the table: 4-12 or 6 - 8 or or 48. These give
n =311, 51 . 71, 47!, that is: n = 33, 35,47 are the only solutions to o(n) = 48.
9 marks. Seen similar on exercise sheet.

(iii) Since d(n) = (n1 + 1)(n2 + 1) ..., the only way for d(n) = 27 is if there exists n; +1 = 27
and all other n; = 0, or when there exist n; +1 = 9,7, + 1 = 3 and all other n; = 0, or when
there exist n; +1 = 3,n; +1 = 3,y = 3 and all other n; = 0. These correspond to n have
the form: n = p?® for some prime p, or n = p¥¢?, for some distinct primes p, g, or n = p?¢?r?,
for some distinct primes p, g, 7, The smallest number of the first type is 225 = 67108864. The
smallest number of the second type is 28 - 32 = 2304. The smallest number of the third type is
22.32.52 = 900. So, the smallest n such that d(n) = 27 is n = 900.

3 marks. Seen similar on exercise sheet, but this one is harder.

(iv) Note that, since 2¥, 3,5 are pairwise coprime, we have (2* - 15) = o(2%)0(3)0(5) = Qk;_lfl .

4-6 = 24(2*+1 —1). For n = 2¥-15 to be perfect, we must have o(n) = 2n, that is: 24(28T1 —1) =
2 - 2% . 15, which is the same as: 2% - 3(2F*! — 1) = 2%+l . 15. But the power of 2 in the left
hand side is 2% and the power of 2 in the right hand side is 25!, which forces k = 2 as the only
possible value of k. But on substituting k& = 2 into both sides, gives 23-3- (23 — 1) = 168 as the
left hand side, and 23 - 15 = 120 as the right hand side, which are not equal. Hence there is no
value of k satisfying the equation, and so no value of k for which 2% - 15 is perfect.

4 marks. Unseen.




Question 7.
(i) First, note P, = agQo — Py =ap-1—0=ap = [\/ﬁ]
and Q1 = (n — P?)/Qo = (n—ad)/1 =n —dd.

Suppose @ = 1 for some k > 1. Then zy = Py + +/n so ax, = [zx] = P + [v/n] = Px + ao.
That is, a — P, = ag. Hence,

Piy1 = apQr — Py =ar — Py = ap = P and Q41 = (n — P2,,)/Qr = (n — a3)/1 = Q1.
Furthermore, Tyl = (Pk:—i—l + \/ﬁ)/Qk_H = (P1 + \/ﬁ)/Ql = 1 and so a1 = [xk+1] = [.%‘1] =
a1. This means that rows Py, Q1,71,a1 and Py, Qk+1,Zk+1,0k+1 are identical and so clearly
a+1 = Q1,042 = G2,.... So the continued fraction is [ag, a1, .-, ag)-

6 marks. Bookwork from lectures.

(ii) Draw the following table.

k| P Qu T G

0| O 1 vn o d

1| d d " 2

2| d 1 d++/n 2d
Justification of ag, a1, a9 as follows.

ap = [v/n]. But, foralld > 1,d? < d?* +d < d?*+2d+1 and so d < Vd?2 +d < d+1, so that
V7] = d, ie. ag = d.

o =[5 - [#45) - 4] o -2

ag = [d+/n] = [d+ [Vn]] = [d+d] = [2d] = 2d.
The fact that Q2 = 1 signals recurrence, so that /n = [d, 2, 2d], as required.
8 marks. Seen similar on exercise sheet.

(iii) d = 6 gives n = 42 i.e. V42 =[6,2,12].
Using initial values pg = ag,qo = 1,p1 = apa1 + 1, g1 = a1 together with the standard recurrence

relations: pgi1 = ag+1Pk + Pk—1 and gg1 = ak+1qk + gr—1 for convergents p/q of 4/n, and the
identity p? — ng2 = (—1)*"1Qx41, we get

k| ag Dk qk

0| 6 6 1
1] 2 13 2
2112 162 25
3| 2 337 52
4112 4206 649

5| 2 8749 1350

This gives three solutions: z = 13,y =2 and z = 337,y = 52 and = = 8749,y = 1350.
6 marks. Seen similar on exercise sheet.




Question 8.

(i) Euler’s Criterion: Let p be an odd prime not dividing n. Then (%) = n(P—1/2 (mod p).

2 marks. Statement of result from lectures.

(i) By (i), (31) = (-1)®/2 =1 (mod p) <= 2/(p—1)/2 <= 4|(p—1) <= p=1(mod 4).

3 marks. Bookwork from lectures.

(iii) By (i), (%) = 2(p~1/2 (mod p). Now note that, if 1 < r,s < (p—1)/2 and 2r = +2s (mod p),

then r = +s (mod p) [since (2,p) = 1] and so r = s. Hence the numbers (*) given by:

2-1,2-2,...2-(p—1)/2 have least absolute residues mod p with distinct absolute values. Let

(**) be the same list of numbers, except with each number replaced by its least absolute residue

mod p, which gives (p — 1)/2 nonzero numbers of distinct absolute value, and so their absolute

values must be 1,2,...,(p — 1)/2 in some order. Equating the product of (*) with that of (**)

mod p, and cancelling 1-2-...- (p — 1)/2, gives that 27-1)/2 = (=1)™ (mod p), where m is

the number of minus signs in (**), which is the same as the number of members z of (*) in the

range (p —1)/2 < z < p. Any odd prime p = +1,+3 (mod 8), and in each case, we need to

check whether m is even, in which case (;) =1, or m is odd, in which case (2) = —1.

Case 1. p =1 (mod 8), that is p = 8k + 1 for some k. Then (p 1)/2 = 4k, and (*) has precisely

the 2k numbers 4k + 2,4k + 4, ..., 8k in the range (p — 1)/2 < x < p. Thus m = 2k is even, and

SO ( ) =1.

Case 2. p = —1 (mod 8), that is p = 8k — 1 for some k. Then (p — 1)/2 = 4k — 1, and (*) has

precisely the 2k numbers 4k, 4k + 2,...,8k — 2 in the range (p — 1)/2 < z < p. Thus m = 2k is

even, and so (p) = 1.

Case 3. p = 3 (mod 8), that is p = 8k + 3 for some k. Then (p — 1)/2 = 4k + 1, and (*) has

precisely the 2k + 1 numbers 4k + 2,4k +4,...,8k + 2 in the range (p — 1)/2 < z < p. Thus
=2k + 1 is odd, and so (p) -1

Case 4. p= -3 (mod 8), that is p = 8k — 3 for some k. Then (p — 1)/2 = 4k — 2, and (*)

has precisely the 2k — 1 numbers 4k,4k + 2,...,8k — 4 in the range (p — 1)/2 < z < p. Thus

m = 2k — 1 is odd, and so (%) =-1.

8 marks. Bookwork from lectures.

(iv) Gauss’ Law of Quadratic Reciprocity: Let p,q be two distinct odd primes. If p = 1 (mod 4)
or ¢ =1 (mod 4) then ( ) = (p) If p =3 (mod 4) and g = 3 (mod 4) then (%’) = —(1%).
() = (ﬁ)(%) (71) [by (iii) since 71 = —1 (mod 8)]
1) [by QR, since 71 and 7 are = 3 (mod 4)]
= —1 [since 1 = 12 (mod 7)].
= )(%) = —(%) [by (ii), since 71 = 3 (mod 4)]
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= () [by QR, since 71 and 3 are = 3 (mod 4)]
= (%) = (5t) = —1 [by (ii), since 3 = 3 (mod 4)]
() =(2)(3) = (3)(®) [by QR, since 5 =1 (mod 4)]
Sl ()= @)=1or () =(2) =1
+1 (mod 8) and p = +1 (mod 5)) or (p = +3 (mod 8) and p = +2 (mod 5))

(p=
<= p==+1,49 (mod 40) or p = £3,+13 (mod 40).
In summary, (=}) =1 <= p=+1,+3,£9, £13 (mod 40), as required.
7 marks. Unseen.



