Solutions to MATH342 (Number Theory) January 2004 examination

Question 1.

(i) Let the integer d be a common divisor of & and 3, that is: d|a and d|B; then d|(a + kf) and
so d is a common divisor of a + k£ and 3. Conversely, let d be a common divisor of a + kf3
and 8. Then d|(a + kB) — kB = «, so that d is a common divisor of @ and . Hence, the set
of common divisors of «, 8 is the same as the set of common divisors of a + kS, 3, and so the
greatest common divisor is the same in each case; that is: (a,8) = (a + k3, 8). The same type
of argument shows: (a, 3) = (o, 8 + ka).

3 marks. Bookwork from lectures.

(ii) Repeated applications of part (i) give: (m?—3, m?—2m+2) = (m?—3, m®—2m+2—m(m?-3))
= (m?-3,m+2) = (m?-3-—m(m+2),m+2) = (—2m—3,m+2) = (—2m—3+2(m+2),m+2)
= (1,m +2) =1, since d = 1 is the only d > 0 such that d|1.

4 marks. Seen similar on an exercise sheet.

Similarly: (n!+2,(n+1)!+n+2) = (n!+2,(n+)!+n+2—(n+1)(n!+2)) = (n!+2,—n)
=(n!'+2,n)=Mm+2-(n—1)n,n) =(2,n) =1, when n is odd and 2 when 7 is even. In
summary: (n!+2,(n+ 1)!+n+2) =1 or 2, when n is odd or even, respectively.

3 marks. Seen similar on an exercise sheet.

(iii) First solve 4z = 6 (mod 10). Note that (4,10) = 2|6, so there is a solution. Divide everything
throught by 2 to get: 4z = 6 (mod 10) <= 2z = 3 (mod 5). Multiply both sides by 3 (which
is the inverse of 2 modulo 5) to get: 6z =9 (mod 5), that is: z =4 (mod 5), so that x = 4+ 5k,
for some integer k. Substitute this into the second congruence to get: 2(4 + 5k) = 13 (mod 17),
so that 10k =5 (mod 17). We now need to find the inverse of 10 mod 17.

(1 0 17)_}(1 -1 7 )_}( 1 -1 7)_}( 3 -5 1)_}( 3 =5 1)

0 1 10 0 1 10 -1 2 3 -1 2 3 -10 17 0 )°
The top line of the last matrix tells us: 3-17 + (—5) - 10 = 1, so that —5 is an inverse of 10

mod 17. Multiplying both sides of 10k =5 (mod 17) by —5 gives: k = —25 =9 (mod 17); that

is: k =9+ 17£. Substituting this into z = 4 + 5k gives: z =4+ 5(9 + 17£) = 49 + 85/, which is

the same as: z = 49 (mod 85).

4 marks. Seen similar on an exercise sheet.

(iv) The first congruence is satisfied by z = 2 + (m? — 3)k, for any integer k. Substituting this
into the second equation give: 2 + (m? — 3)k = 4 (mod m3 — 2m + 2), that is: (m? — 3)k =
2 (mod m3 — 2m + 2). Need first to find inverse of m? — 3 mod m3 — 2m + 2.

10 m?2-3 1 0 m?-3 m?—2m+1 —-m+2 1
(01m3—2m+2)_><—m1 m—|—2>_>< —m 1 m—|—2>'
The top line of the last matrix tells us: (m? — 2m + 1)(m? — 3) + (—=m + 2)(m?® — 2m + 2) = 1,
so that m? — 2m + 1 is an inverse of m? — 3 modulo m? — 2m + 2. Multiplying both sides of
(m? —3)k = 2 (mod m?® —2m +2) by m? —2m+1 gives k = 2(m? —2m+1) (mod m? —2m+2),
that is: k& = 2(m? — 2m + 1) + (m® — 2m + 2)£. Substituting this into z = 2 + (m? — 3)k
gives z = 2 + 2(m? — 3)(m? — 2m + 1) + (m? — 3)(m?® — 2m + 2)¢, which is the same as:
z = 2(m* — 2m? — 2m? 4+ 6m — 2) (mod (m? — 3)(m3 — 2m + 2)).

4 marks. Unseen, and of a new type.

(v) When n is even, from part (ii), (n! + 2, (n + 1)! + n + 2) = 2 which is not a factor of 3, so
that the first congruence has no solutions. When n is odd, (2,n + 1) = 2, which is not a factor
of 5, so that the second congruence has no solutions. In all cases, there is no solution to the

simultaneous congruences.
2 marks. Unseen, and of a new type.



Question 2.
(i) For n > 1 define ¢(n) to be the number of integers z satisfying 1 < z < n and (z,n) = 1.
Let {z1,...,zr} be complete set of distinct residues (mod n) which are coprime to n, so that
k = ¢(n). Let (a,n) = 1. Then each az; is coprime to n (since both of a and z; are coprime to
n) and az; = ar; <= z; = z; (since (a,n) = 1) <= i =j. It follows that az1,...,azy are all
distinct (mod n) and are all coprime to n, giving that {az1,...,az} is the same set (mod n) as
{z1,...,7}. Hence (az1)(azx2)...(azy) = 1172 ... Tk, 50 a¥(z172 ... 71) = 2172 ... 71, (Mod 7).
But (2122 ... zk,n) = 1 (since each (z;,n) = 1), and so we can cancel 21z . . . 7y from both sides
to give aF = 1, that is: a®™ =1 (mod n), as required.
5 marks. Bookwork from lectures.
Since 51 = 3 x 17, we have #(51) = 2 x 16 = 32, so that 532 = 1 (mod 51), since (5,51) = 1.
Therefore, 2- 5130 = 2.52.5128 =2.52. (532)4 =2.52.14 =50, so that 2- 530 + 1 =50+1=
0 (mod 51), that is, 51|(2 - 5'3° +1).
2 marks. Seen similar on an exercise sheet.
(i) Writing n = p}* ... pi* (prime power factorization), ¢(n) = p* " (p1 — 1)...pp* ' (pr — 1).
If p|n then p = p; for 1 <14 < n, so that from the formula (p — 1)|n.

Here is a table of ¢(p®) for small values of the prime p and the exponent a > 1. Since all
rows and columns are strictly increasing, any further entries would be greater than 26 and so
are irrelevant.

al p—>1] 2 3 5 7 11 13 17 19 23 29
1 1 2 4 6 10 12 16 18 22 28
2 2 6 20 42
3 4 18 100
4 8 54
5 16
6 32

Now the following give all the ways of writing 16 as a product of entries in distinct columns
of the table: 16 = 16, corresponding to n = 17! and n = 2°%; 16 = 1 - 16, corresponding to
n =21.17% 16 = 4 - 4, corresponding to n = 23 - 5'; 16 = 8 - 2, corresponding to n = 2% - 31;
16 = 2.2 .4, corresponding to n = 22 .3 .5 So, n = 17,32, 34,40,48,60 are the only n
satisfying ¢(n) = 16. Finally note that neither 13 nor 26 occur as entries, so that 26 can never
be attained as a product of entries; hence there does not exist n for which ¢(n) = 26.

9 marks. Seen similar on an exercise sheet.

(iii) Let n be such that ¢(n) is divisible by 2 but not by 4. Then n cannot be divisible by any
prime p = 1 (mod 4), since by part (ii) that would give 4|(p — 1)|n, a contradiction. Similarly, n
cannot be divisible by two distinct odd primes p1, p2 since then 4|(p; — 1)(p2 — 1)|n. So, n can
only be of the form n = 2"p® for some r,a > 0 and some p = 3 (mod 4). If r > 3 or (r = 2
and a > 0) then 4|2"7!|¢(n) or 4/2"~(p — 1)|#(n), respectively, a contradiction in either case.
Therefore (r =2 and a = 0) or (r = 0,1 and a > 0) are the only possibilities; that is, n = 4, p®
or 2p, for some a > 0. Indeed in these cases, ¢(4) = 2 and ¢(n) = (p—1)p® !, which is divisible
by 2 but not by 4 (since p = 3 (mod 4)), as required. Finally, note that if #(n) = 2 x 53¢
then n = 4,p® or 2p® for some a > 0 and prime p = 3 (mod 4); we can exclude n = 4 since
#(4) = 2 # 2 x 5130 and so n = p® or 2p?, giving ¢(n) = (p — 1)p®~!. If @ = 1 then this would
mean p — 1 = 2 x 5139 a contradiction, since we have already seen in part (i) that 2 x 5130 +1
is divisible by 51 and so is not prime. If a > 1 then (p — 1)p®~! = 2 x 5!3% 50 that p = 5, but
then only the left hand side would be divisible by 4, a contradiction.

4 marks. Unseen.



Question 3.

(i) A Carmichael number is any n such that n is composite, and, for every b with (b,n) = 1,
we have b"~! = 1 mod n. Let n = q;...q; be as in the question. Then n is composite since
k > 2. Let (b,n) = 1. Then (b,q;) = 1 for all . By Fermat’s theorem, %! = 1 mod ¢;. But
n —1 = k;(g; — 1) say, since we are given that (¢; — 1)|(n — 1). Hence

pnl = (bqi—l)k" =1 (mod g).

Since the congruence " ! holds mod g; for each i, it holds mod the lcm of the ¢; which is their
product n since they are pairwise coprime. That is: 5” ! = 1 (mod n), as required.
7 marks. Bookwork from lectures.

(ii) We know any prime p > 3 satisfies p = £1 (mod 6). If p = —1 (mod 6) then we would have
2p — 1 = —3 (mod 6), which would contradict 2p — 1 prime. So, we can’t have p = —1 (mod 6),
which means we must have p = 1 (mod 6). Now, n—1 = p(2p—1)(3p—2)—1 = (p—1)(6p*>—p+1);
further, (6p? — p + 1) is a multiple of 6 (since p = 1 (mod 6)). Hence, all of p — 1, 2(p — 1),
3(p — 1) are factors of n — 1, that is, allof: p—1, (2p —1) — 1, (3p —2) — 1 are factors of n — 1.
Hence, n is a product of distinct primes, ¢1 = p, g2 = 2p — 1, g3 = 3p — 2, with (¢ — 1)|(n — 1)
for all 4, and so n is a Carmichael number by (i).

Checking: p = 5 gives 2p — 1 = 9 nonprime, p = 7 gives 2p — 1 = 13 and 3p — 2 = 19,
both prime. So, p = 7 is the smallest p > 3 for which p,2p — 1,3p — 2 are all prime, and so
7-13-19 = 1729 is the smallest Carmichael number of this form.

8 marks. Seen similar on exercise sheet.

(iii) Note that (p — 1)|(p — 1) so that p = 1 (mod p — 1). We are given that (p — 1)|(¢gr — 1)
and so gr = 1 (mod p — 1). Multiplying these equations gives: pgr = 1 (mod p — 1), and so:
(p — 1)|(pgr — 1) = (n — 1). Similarly, (¢ — 1)|(pr — 1) gives that (¢ — 1)|(n — 1). Similarly
(r — 1)|(pqg — 1) gives that (r — 1)|(n — 1). Hence n satisfies the conditions of (i) and so is
a Carmichael number. Letting p = 601, = 1201, = 1801, we see that (¢gr — 1)/(p — 1) =
2163000/600 = 3605, so that (p —1)|(¢r —1). Similarly, (pr — 1)/(¢ — 1) = 1082400/1200 = 902,
so that (¢—1)|(pr—1). Similarly, (pg—1)/(r —1) = 721800/1800 = 401, so that (r —1)|(pg—1).
Hence n is a Carmichael number (alternatively, use (ii) with p = 601,2p—1 = 1201, 3p—2 = 1801
all prime).

5 marks. Unseen.



Question 4. All congruences are mod m in what follows. Clearly

r1=1, ro =10r =10, r3 = 10ry = 10, etc.,
and generally r; 1 = 107. Tt is also clear that the calculation of the decimal places ¢; repeats
when one of the remainders r; becomes equal to a previous remainder r;. I claim that when
this happens, i = 1. Proof: If i > 1 and 7y = r; (k > 1) is the first repeat then 107 )1 =
Tivk = 73 = 10r;_1 and 10 can be cancelled since 2/ m and 5} m, so that r;_14, = r;—1 and
consequently these remainders are equal since both are between 1 and /m—1. But this contradicts
the assumption that r;;; = r; is the first repeat.

Thus recurrence starts with rpy; =71 =1, i.e. ¢1 = gx+1,92 = qr+2 and so on. Thus k is
the smallest number such that 10¥ = 1, i.e. the order of 10 mod m is k, which is the length of
the period.

9 marks.

Now suppose p is prime, p # 2,p # 5. When the length of the period is 2k we have

rok+1 = 10%% =1 so that (10¥)2 = 1 and since the modulus is prime, this implies 10* = +1. But

it cannot be 1 since the period is 2k not k so rg+1 = —1, which in view of 0 < 7; < p implies
Tk+1 =p — L.
4 marks.

19 = 10,7p40 = 1081 =108 .10 = 10 = —1r9, 7443 = 10FT1 = 10F . 102 = —10? = —73,
etc., i.e. 7y +1; =0, j =1,2,..., but both these are strictly between 0 and p so they must
add up to p.

Finally, note that, since 107; = pq; + 1341 and 10r;4x = pgi+k + Ti+k+1, We can add these two
equations to give: 10(r; + ritx) = p(¢i + ¢ivk) + (Tiy1 + Titk+1), so that 10p = p(q; + gi+x) +p
(from the previous result), so that g; + ¢;1r = 9, as required.

7 marks. All bookwork from lectures.



Question 5.

(i) o(n) = the sum of the divisors of n which are > 1.

p? has divisors 1,p,p?,...p% 1, p? so that o(p?) =1 +p+p> +...p% = (p°F —1)/(p — 1).
ni+1 np+1

s _ Nk . _p -1 Pt 1
Writing n = p{* ...p.*, we have: o(n) = T T

3 marks. From lectures.

If p is odd and a is odd, then each term of 1 4+ p 4+ p? + ... + p® is odd, and there is an even
number (a + 1) of terms, so that the sum is even. If p is odd and a is even, then each term
of 1 +p+p? +... +p® is again odd, but now there is an odd number (a + 1) of terms, so that
the sum is odd.

2 marks. Unseen.

(i) o(n) = 0(2%)0(2°F! — 1) [since (25,271 —1) = 1]. But 0(2°) = (251 -1)/(2—-1) = 25F1 -1,
by the formula in (i), and o(25t! — 1) = 1 + (2**! — 1) [since 25! — 1 is prime]. So:

o(n) = (25T = 1)(1 + (27 — 1)) = 25F1(25+1 — 1) = 2(2%(2*F! — 1)) = 2n. Hence n is perfect.
The first three such numbers are: 6 = 2 x (22 —1),28 = 22 x (23 — 1) and 496 = 2* x (25 —1).
4 marks. Bookwork from lectures.

(iii) We have

a—|—1_1 a+1
o(p®) = L <P pa(p )

p—1 p—1_
Also p%l =1+ p%l, so if p > pg then we have

1 1
p—1 p—1 po—1 po—1
Applying this to pg = 3 and 5 we get that

I

a 3 b
olp") _ _p <3 o(q’) q
pe p—1—2 gt g—1

= ot

p23=

As p and g are distinct primes, (p?, ¢®) = 1, and so:
o(n) _op)old’) _3
n peqb 2
as required. Hence o(n) # 2n so that n is not perfect.
7 marks. Seen similar on exercise sheet.

5
ST c<9
4 <%

(iv) Assume that n is perfect, so that o(n) = 2n.

Imagine 3 were not a factor of n then the smallest possible values for pi, ps, ps3, P4, P5, P would

be 5,7,11,13,17,19, so that, as in part (iii), U(I;;ll), "(”%2), ”(”ég), "(’1;44), U(IE), a(pr;ﬁe) would be,
5 7 1 13 17! 19 sz Ps P4 Ps Po

5—1) 7—1» T1—17 13—17 T7—17 19—1- 1€1CE,

a(n) _ olpi*)o(py’)olps®)o(pi*)olps®)olps®) 5711131719 1616615

n4, N5 AC1019 14 1R

= — K s
n PLpy Pt pytpet pg® 4610121618 829440

respectively, less than

so that o(n) # 2n so that n would not be perfect, a contradiction.
Hence 3|n, as required.

Also, o(n) = 2n gives o(p}')o(p3*)o(p3®)o(py*)o(ps°)a(ps®) = 2p1'Py*p3°py'ps°pg°. Note
that the right hand side is divisible by 2, but not by 4 (since pi,...,ps are all odd), so that
precisely one factor of the left hand side is even; but by the last part of (i), this is the same as
saying that precisely one of n1,...,ng is odd.

4 marks. Unseen.



Question 6.
(i) Miller’s test on n to base b (where n be an odd positive integer and b coprime to n). We use
(z) to denote the least positive residue of  mod n.

Step 1. Let k =n — 1, (b¥) = r. If r = 1 then continue, otherwise n fails the test.

While £ is even and r = 1 then repeat the following.

Step 2. Replace k by k/2, and replace r by the new value of (b*).

When £ fails to be even or r fails to be 1:

If r=1o0r n— 1 then n passes the test.

If r #1 and r # n — 1 then n fails the test.

5 marks. From lectures.

If n = p, prime, then #»~! = 1 (mod p) by Fermat’s Theorem, and so n passes Step 1. At
any application of Step 2, we have k even and b* = 1 (mod p), so that (b¥/2)2 = bk = 1 (mod p),
and so b¥/2 = +£1 = 1 or p — 1 (mod p) [using the fact that, for p prime, 22 = 1 has only the
solutions z = +1 (mod p)]. If b¥/2 = p — 1 (mod p) or k/2 is odd, then p passes Miller’s test to
base b, otherwise Step 2 is repeated. Therefore, when Miller’s test terminates, p will pass.

4 marks. From lectures.

(ii) Check: (6,217) = 1, so that Miller’s Test can be applied on 217 to base 6. First compute:
63 = 216 = —1 (mod 217). This gives, 627~ = 6216 = (63)™2 = (-1)"? = 1, so that 217 is a
pseudoprime to the base 6 (given that 217 = 7 - 31 and so is composite). The exponent 216 is
even, so we continue to compute 6% = (62)36 = (—~1)36 = 1. The exponent 108 is still even, so
we continue to compute 6% = (63)!® = (=1)!® = 1, and then 627 = (63)° = (-1)? = -1 = 216.
We stop, since the exponent is odd, and see that the result is indeed 1 or 217 — 1, with 217
passing Miller’s test to base 6. Thus, 217 is a strong pseudoprime to base 6.

Check: (8,65) = 1, so that Miller’s Test can be applied on 65 to base 8. First compute:
82 = 64 = —1 (mod 65). This gives, 85571 = 86* = (82)32 = (—1)32 = 1, so that 65 is a
pseudoprime to the base 8 (given that 65 = 5-13 and so is composite). The exponent 64 is even,
so we continue to compute 832 = (82)!6 = (—~1)!® = 1. The exponent 32 is even, so we continue
to compute 8'¢ = (82)% = (—1)® = 1. The exponent 16 is even, so we continue to compute 8% =
(82)* = (—1)* = 1. The exponent 8 is even, so we continue to compute 8* = (82)2 = (-1)? = 1.
The exponent 4 is even, so we continue to compute 82 = —1 = 64 (mod 65). The residue is no
longer 1, and so we stop. We see that the last residue is 1 or 65 — 1, so that 65 passes Miller’s
Test to base 8. Thus, 65 is a strong pseudoprime to base 8.

Check: (2,129) = 1, so that Miller’s Test can be applied on 129 to base 2. First compute:
27 =128 = —1 (mod 129), so that 21291 = 2128 = 2126.92 — (97)18.92 = (_1)!8.4 = 4 (mod 129),
giving that 129 is not a pseudoprime to base 2. Miller’s Test is immediately failed at Step 1, so
that 129 is not a strong pseudoprime to base 2.
7 marks. Seen similar on ezercise sheet.

(iv) First note that from n = 22" 41 we get 22" +1=0 (mod n) and so 22 = 1 (mod n).
Since k > 1, we have that 2 > k and so let £ = 2¥ —k > 0. Then 2" 1 = 222k — 92t _ g2k2f _
(22k)2£ = (—1)2‘5 = 1 (mod n), so that n passes Step 1 of Miller’s Test. The exponent is even, so
we continue to halve the exponent to get: (22°)2 ' = (=1)2 ' =1,(2¥)? = (-1)?" " =1,.. .,
until we get: (22°)2° = (=1)2" = =1 = n — 1 (mod n). The residue is no longer 1, and so we
stop. We see that the last residue is 1 or n — 1, so that n passes Miller’s Test to base 2.

4 marks. Unseen.



Question 7.
(i) First, note Pi = agQo — Py =ap-1—0=ap = [\/ﬁ]
and Q1 = (n — P?)/Qo = (n—ad)/1 =n —dd.

Suppose Qy = 1 for some k > 1. Then zy = P + v/n so ax = [zx] = Py + [v/n] = Px + ao.
That is, a — P, = ag. Hence,

Piy1 = apQr — Py =ay — Py = ag = P and Q41 = (n — P2,,)/Qx = (n — a3)/1 = Q1.
Furthermore, Tyl = (Pk:—i—l + \/ﬁ)/Qk_H = (P1 + \/ﬁ)/Ql = 1 and so a1 = [xk+1] = [.%‘1] =
a1. This means that rows Py, Q1, 71,01 and Py, Qk+1,%k+1,0k+1 are identical and so clearly
a+1 = Q1,042 = G2,.... So the continued fraction is [ag, a1, .-, G-

6 marks. Bookwork from lectures.

(ii) Draw the following table.

k| Py Q Ty ak
0] 0 1 /. 3d
1|3d 64 o
2034 1 3d+.m 6d

Justification of ag, a1, a9 as follows.
ap = [v/n]- But, for all d > 1, (3d)? = 9d* < 9d% + 6d < 9d*> + 6d + 1 = (3d + 1)? and so
3d < V9d? + 6d < 3d + 1, so that [\/n] = 3d, i.e. ap = 3d.

al = [3(12;;/6] _ [3d—|é%/ﬁ}] _ [3(1;:13(1} =[1] =1.

as = [3d + /n] = [3d + [\/n]] = [3d + 3d] = [6d] = 6d.
The fact that Q2 = 1 signals recurrence, so that \/n = [3d, 1, 6d], as required.
8 marks. Seen similar on exercise sheet.

(iii) d = 2 gives n = 48 i.e. V48 = [6,1,12].

Using initial values pg = ag,q0 = 1,p1 = apa1 +1,¢1 = a1 together with the standard recurrence
relations: pgi1 = ak11Pk + Pr—1 and gr+1 = ag+1gk + gx—1 for convergents p/q of \/n, and the
identity p? — ng2 = (—1)*"1Qx41, we get

k| ag Pk
0| 6 6 1
1 1 7 1
2112 90 13
3 1 97 14
4112 1254 181
5 1 1351 195

This gives three solutions: z =7,y =1 and £ = 97,y = 14 and = = 1351,y = 195.
6 marks. Seen similar on exercise sheet.



Question 8.

(i) Euler’s Criterion: Let p be an odd prime not dividing n. Then (%) = n(P—1/2 (mod p).

2 marks. Statement of result from lectures.

(i) By (i), (31) = (-1)®/2 =1 (mod p) <= 2/(p—1)/2 <= 4|(p—1) <= p=1(mod 4).
4 marks. Bookwork from lectures.

(iii) Gauss’ Law of Quadratic Reciprocity: Let p,q be two odd primes. If p = 1 (mod 4) or
g =1 (mod 4) then ("E’) = (%). If p =3 (mod 4) and ¢ = 3 (mod 4) then (1‘—(;) = —(%).
2 marks. Statement of result from lectures.
(191??) (193)(%) (193) [by (ii) since 193 =1 (mod 4)]
= (13) [by QR, since 193 =1 (mod 4)]
(%) (Q) [by QR, since 19 and 3 are both = 3 (mod 4)].
—(%) = —1 [since 1 = 12 (mod 3), so that (3) = 1].

Note that 0%,12,22 are 0,1,1 mod 3, so that 0,1 are quadratic residues mod 3 but 2 is
not. We then have (3) = 1 and (2) = —1. For p = 3 we have () # 1. We are given that
p is odd, so we do not need to consider p = 2. All primes p # 2,3 are coprime to 12 and so
satisfy p =1,5,7 or 11 (mod 12).

When p =1 (mod 12), we have p =1 (mod 3) and p = 1 (mod 4), so that

(%) = (&) [by QR, since p=1 (mod 4)] = (3) = 1.

When p =5 (mod 12), we have p =2 (mod 3) and p = 1 (mod 4), so that
(%) (2) [by QR, since p=1 (mod 4)] = (3) = —1.

When p =7 (mod 12), we have p =1 (mod 3) and p = 3 (mod 4), so that

(
(%) = —(2) [by QR, since p and 3 are both = 3 (mod 4)] = —(3) = —1.
When p = 11 (mod 12), we have p = 2 (mod 3) and p = 3 (mod 4), so that
(;’—)) = —(2) [by QR, since p and 3 are both = 3 (mod 4)] = —(3) = —(-1) = 1.
So, in summary, we have that (%) =1iff p==+1 (mod 12), as required.

5 marks. Unseen.

(iv) Let p1,p2,...,pr be primes, all congruent to —1 (mod 12). Let n = 3(2p1ps...px)? — 1.
Note that n = 12(pips...pr)? — 1 = —1 (mod 12). Now, let p be prime and p|n. Then
p|3(2p1p2 - .. pr)? — 1 and so 3(2p1ps---pk)? = 1 (mod p). But p is not a factor of 2p1ps ... pk
(since if p|2p1p2 ... px, then the fact that p|n would also give pln — 3(2p1p2...pr)? = —1, that
is: p|(—1), a contradiction) giving that 2p;py...pg has an inverse @ mod p. Multiplying both
sides of 3(2p1p2---pr)? = 1 (mod p) by o? gives 3 = o? (mod p), and so (%) = 1. Hence
p = £1 (mod 12) [by part (iii)]. Finally, note that it is impossible for all prime factors of n to
be congruent to 1 (mod 12) [since the product of numbers congruent to 1 (mod 12) is congruent
to 1 (mod 12), whereas n = —1 (mod 12)]; hence at least one prime p dividing n must satify
p = —1 (mod 12). Thus p is a new prime, distinct from p1,pa, . .., p, satisfying p = —1 (mod 12)
[note that p is distinct from py,po, ..., pk, since, if p = p; then pln = 12(p1ps...pr)% — 1 and
p|12(p1p2 - .. px)?, implying p|(—1), a contradiction]. Imagine there were only finitely many
primes congruent to —1 (mod 12), and that py,...,px lists all of them; the above argument
shows the existence of a new such prime p, a contradiction; hence there are infinitely many such
primes, as required.

7 marks. Unseen, but broadly similar in strategy to a problem on an ezercise sheet.



