Solutions to MATH342 (Number Theory) January 2004 examination

Question 1.

(i) Let the integer d be a common divisor of α and β , that is: $d|\alpha$ and $d|\beta$; then $d|(\alpha + k\beta)$ and so d is a common divisor of $\alpha + k\beta$ and β . Conversely, let d be a common divisor of $\alpha + k\beta$ and β . Then $d|(\alpha + k\beta) - k\beta = \alpha$, so that d is a common divisor of α and β . Hence, the set of common divisors of α , β is the same as the set of common divisors of $\alpha + k\beta$, β , and so the greatest common divisor is the same in each case; that is: $(\alpha, \beta) = (\alpha + k\beta, \beta)$. The same type of argument shows: $(\alpha, \beta) = (\alpha, \beta + k\alpha)$.

3 marks. Bookwork from lectures.

(ii) Repeated applications of part (i) give: $(m^2-3, m^3-2m+2) = (m^2-3, m^3-2m+2-m(m^2-3)) = (m^2-3, m+2) = (m^2-3-m(m+2), m+2) = (-2m-3, m+2) = (-2m-3+2(m+2), m+2) = (1, m+2) = 1$, since d=1 is the only d>0 such that d|1.

4 marks. Seen similar on an exercise sheet.

Similarly: (n! + 2, (n + 1)! + n + 2) = (n! + 2, (n + 1)! + n + 2 - (n + 1)(n! + 2)) = (n! + 2, -n)= (n! + 2, n) = (n! + 2 - (n - 1)!n, n) = (2, n) = 1, when n is odd and 2 when n is even. In summary: (n! + 2, (n + 1)! + n + 2) = 1 or 2, when n is odd or even, respectively.

3 marks. Seen similar on an exercise sheet.

(iii) First solve $4x \equiv 6 \pmod{10}$. Note that (4,10) = 2|6, so there is a solution. Divide everything throught by 2 to get: $4x \equiv 6 \pmod{10} \iff 2x \equiv 3 \pmod{5}$. Multiply both sides by 3 (which is the inverse of 2 modulo 5) to get: $6x \equiv 9 \pmod{5}$, that is: $x \equiv 4 \pmod{5}$, so that x = 4 + 5k, for some integer k. Substitute this into the second congruence to get: $2(4+5k) \equiv 13 \pmod{17}$, so that $10k \equiv 5 \pmod{17}$. We now need to find the inverse of 10 mod 17.

$$\left(\begin{array}{ccc} 1 & 0 & 17 \\ 0 & 1 & 10 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 1 & -1 & 7 \\ 0 & 1 & 10 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 1 & -1 & 7 \\ -1 & 2 & 3 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 3 & -5 & 1 \\ -1 & 2 & 3 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 3 & -5 & 1 \\ -10 & 17 & 0 \end{array}\right).$$

The top line of the last matrix tells us: $3 \cdot 17 + (-5) \cdot 10 = 1$, so that -5 is an inverse of 10 mod 17. Multiplying both sides of $10k \equiv 5 \pmod{17}$ by -5 gives: $k \equiv -25 \equiv 9 \pmod{17}$; that is: $k = 9 + 17\ell$. Substituting this into x = 4 + 5k gives: $x = 4 + 5(9 + 17\ell) = 49 + 85\ell$, which is the same as: $x \equiv 49 \pmod{85}$.

4 marks. Seen similar on an exercise sheet.

(iv) The first congruence is satisfied by $x = 2 + (m^2 - 3)k$, for any integer k. Substituting this into the second equation give: $2 + (m^2 - 3)k \equiv 4 \pmod{m^3 - 2m + 2}$, that is: $(m^2 - 3)k \equiv 2 \pmod{m^3 - 2m + 2}$. Need first to find inverse of $m^2 - 3 \pmod{m^3 - 2m + 2}$.

$$2 \pmod{m^3 - 2m + 2}. \text{ Need first to find inverse of } m^2 - 3 \pmod{m^3 - 2m + 2}.$$

$$\left(\begin{array}{cccc} 1 & 0 & m^2 - 3 \\ 0 & 1 & m^3 - 2m + 2 \end{array}\right) \rightarrow \left(\begin{array}{ccccc} 1 & 0 & m^2 - 3 \\ -m & 1 & m + 2 \end{array}\right) \rightarrow \left(\begin{array}{ccccc} m^2 - 2m + 1 & -m + 2 & 1 \\ -m & 1 & m + 2 \end{array}\right).$$

The top line of the last matrix tells us: $(m^2 - 2m + 1)(m^2 - 3) + (-m + 2)(m^3 - 2m + 2) = 1$, so that $m^2 - 2m + 1$ is an inverse of $m^2 - 3$ modulo $m^3 - 2m + 2$. Multiplying both sides of $(m^2 - 3)k \equiv 2 \pmod{m^3 - 2m + 2}$ by $m^2 - 2m + 1$ gives $k \equiv 2(m^2 - 2m + 1) \pmod{m^3 - 2m + 2}$, that is: $k = 2(m^2 - 2m + 1) + (m^3 - 2m + 2)\ell$. Substituting this into $x = 2 + (m^2 - 3)k$ gives $x \equiv 2 + 2(m^2 - 3)(m^2 - 2m + 1) + (m^2 - 3)(m^3 - 2m + 2)\ell$, which is the same as: $x \equiv 2(m^4 - 2m^3 - 2m^2 + 6m - 2) \pmod{(m^2 - 3)(m^3 - 2m + 2)}$.

4 marks. Unseen, and of a new type.

(v) When n is even, from part (ii), (n! + 2, (n + 1)! + n + 2) = 2 which is not a factor of 3, so that the first congruence has no solutions. When n is odd, (2, n + 1) = 2, which is not a factor of 5, so that the second congruence has no solutions. In all cases, there is no solution to the simultaneous congruences.

1

2 marks. Unseen, and of a new type.

Question 2.

(i) For $n \geq 1$ define $\phi(n)$ to be the number of integers x satisfying $1 \leq x \leq n$ and (x, n) = 1. Let $\{x_1, \ldots, x_k\}$ be complete set of distinct residues (mod n) which are coprime to n, so that $k = \phi(n)$. Let (a, n) = 1. Then each ax_i is coprime to n (since both of a and x_i are coprime to n) and $ax_i \equiv ax_j \iff x_i \equiv x_j$ (since (a, n) = 1) $\iff i = j$. It follows that ax_1, \ldots, ax_k are all distinct (mod n) and are all coprime to n, giving that $\{ax_1, \ldots, ax_k\}$ is the same set (mod n) as $\{x_1, \ldots, x_k\}$. Hence $(ax_1)(ax_2) \ldots (ax_k) \equiv x_1x_2 \ldots x_k$, so $a^k(x_1x_2 \ldots x_k) \equiv x_1x_2 \ldots x_k$ (mod n). But $(x_1x_2 \ldots x_k, n) = 1$ (since each $(x_i, n) = 1$), and so we can cancel $x_1x_2 \ldots x_k$ from both sides to give $a^k \equiv 1$, that is: $a^{\phi(n)} \equiv 1 \pmod{n}$, as required.

5 marks. Bookwork from lectures.

Since $51 = 3 \times 17$, we have $\phi(51) = 2 \times 16 = 32$, so that $5^{32} \equiv 1 \pmod{51}$, since (5,51) = 1. Therefore, $2 \cdot 5^{130} \equiv 2 \cdot 5^2 \cdot 5^{128} \equiv 2 \cdot 5^2 \cdot (5^{32})^4 \equiv 2 \cdot 5^2 \cdot 1^4 \equiv 50$, so that $2 \cdot 5^{130} + 1 = 50 + 1 \equiv 0 \pmod{51}$, that is, $51 | (2 \cdot 5^{130} + 1)$.

2 marks. Seen similar on an exercise sheet.

(ii) Writing $n = p_1^{n_1} \dots p_k^{n_k}$ (prime power factorization), $\phi(n) = p_1^{n_1-1}(p_1-1) \dots p_k^{n_k-1}(p_k-1)$. If p|n then $p = p_i$ for $1 \le i \le n$, so that from the formula (p-1)|n.

Here is a table of $\phi(p^a)$ for small values of the prime p and the exponent $a \geq 1$. Since all rows and columns are strictly increasing, any further entries would be greater than 26 and so are irrelevant.

$a\downarrow$	$p \rightarrow$	2	3	5	7	11	13	17	19	23	29
1		1	2	4	6	10	12	16	18	22	28
2		2	6	20	42						
3		4	18	100							
4		8	54								
5		16									
6		32									

Now the following give all the ways of writing 16 as a product of entries in distinct columns of the table: 16 = 16, corresponding to $n = 17^1$ and $n = 2^5$; $16 = 1 \cdot 16$, corresponding to $n = 2^1 \cdot 17^1$; $16 = 4 \cdot 4$, corresponding to $n = 2^3 \cdot 5^1$; $16 = 8 \cdot 2$, corresponding to $n = 2^4 \cdot 3^1$; $16 = 2 \cdot 2 \cdot 4$, corresponding to $n = 2^2 \cdot 3^1 \cdot 5^1$. So, n = 17, 32, 34, 40, 48, 60 are the only n = 16. Finally note that neither 13 nor 26 occur as entries, so that 26 can never be attained as a product of entries; hence there does not exist n = 16.

9 marks. Seen similar on an exercise sheet.

(iii) Let n be such that $\phi(n)$ is divisible by 2 but not by 4. Then n cannot be divisible by any prime $p \equiv 1 \pmod 4$, since by part (ii) that would give 4|(p-1)|n, a contradiction. Similarly, n cannot be divisible by two distinct odd primes p_1, p_2 since then $4|(p_1-1)(p_2-1)|n$. So, n can only be of the form $n=2^rp^a$ for some $r,a\geq 0$ and some $p\equiv 3\pmod 4$. If $r\geq 3$ or (r=2) and a>0, then $4|2^{r-1}|\phi(n)$ or $4|2^{r-1}(p-1)|\phi(n)$, respectively, a contradiction in either case. Therefore (r=2) and a=0 or (r=0,1) and a>0 are the only possibilities; that is, $n=4,p^a$ or $2p^a$, for some a>0. Indeed in these cases, $\phi(4)=2$ and $\phi(n)=(p-1)p^{a-1}$, which is divisible by 2 but not by 4 (since $p\equiv 3\pmod 4$), as required. Finally, note that if $\phi(n)=2\times 5^{130}$ then $n=4,p^a$ or $2p^a$ for some a>0 and prime $p\equiv 3\pmod 4$; we can exclude n=4 since $\phi(4)=2\neq 2\times 5^{130}$, and so $n=p^a$ or $2p^a$, giving $\phi(n)=(p-1)p^{a-1}$. If a=1 then this would mean $p-1=2\times 5^{130}$, a contradiction, since we have already seen in part (i) that $2\times 5^{130}+1$ is divisible by 51 and so is not prime. If a>1 then $(p-1)p^{a-1}=2\times 5^{130}$, so that p=5, but then only the left hand side would be divisible by 4, a contradiction.

4 marks. Unseen.

Question 3.

(i) A Carmichael number is any n such that n is composite, and, for every b with (b, n) = 1, we have $b^{n-1} \equiv 1 \mod n$. Let $n = q_1 \dots q_k$ be as in the question. Then n is composite since $k \geq 2$. Let (b, n) = 1. Then $(b, q_i) = 1$ for all i. By Fermat's theorem, $b^{q_i-1} \equiv 1 \mod q_i$. But $n-1 = k_i(q_i-1)$ say, since we are given that $(q_i-1)|(n-1)$. Hence

$$b^{n-1} = \left(b^{q_i-1}\right)^{k_i} \equiv 1 \pmod{q_i}.$$

Since the congruence b^{n-1} holds mod q_i for each i, it holds mod the lcm of the q_i which is their product n since they are pairwise coprime. That is: $b^{n-1} \equiv 1 \pmod{n}$, as required.

7 marks. Bookwork from lectures.

(ii) We know any prime p > 3 satisfies $p \equiv \pm 1 \pmod{6}$. If $p \equiv -1 \pmod{6}$ then we would have $2p-1 \equiv -3 \pmod{6}$, which would contradict 2p-1 prime. So, we can't have $p \equiv -1 \pmod{6}$, which means we must have $p \equiv 1 \pmod{6}$. Now, $n-1=p(2p-1)(3p-2)-1=(p-1)(6p^2-p+1)$; further, $(6p^2-p+1)$ is a multiple of 6 (since $p \equiv 1 \pmod{6}$). Hence, all of p-1, 2(p-1), 3(p-1) are factors of n-1, that is, all of: p-1, (2p-1)-1, (3p-2)-1 are factors of n-1. Hence, n is a product of distinct primes, $q_1=p$, $q_2=2p-1$, $q_3=3p-2$, with $(q_i-1)|(n-1)$ for all i, and so n is a Carmichael number by (i).

Checking: p=5 gives 2p-1=9 nonprime, p=7 gives 2p-1=13 and 3p-2=19, both prime. So, p=7 is the smallest p>3 for which p,2p-1,3p-2 are all prime, and so $7\cdot 13\cdot 19=1729$ is the smallest Carmichael number of this form.

8 marks. Seen similar on exercise sheet.

(iii) Note that (p-1)|(p-1) so that $p \equiv 1 \pmod{p-1}$. We are given that (p-1)|(qr-1) and so $qr \equiv 1 \pmod{p-1}$. Multiplying these equations gives: $pqr \equiv 1 \pmod{p-1}$, and so: (p-1)|(pqr-1) = (n-1). Similarly, (q-1)|(pr-1) gives that (q-1)|(n-1). Similarly (r-1)|(pq-1) gives that (r-1)|(n-1). Hence n satisfies the conditions of (i) and so is a Carmichael number. Letting p=601, q=1201, r=1801, we see that (qr-1)/(p-1)=2163000/600=3605, so that (p-1)|(qr-1). Similarly, (pr-1)/(q-1)=1082400/1200=902, so that (q-1)|(pr-1). Similarly, (pq-1)/(r-1)=721800/1800=401, so that (r-1)|(pq-1). Hence n is a Carmichael number (alternatively, use (ii) with p=601, 2p-1=1201, 3p-2=1801 all prime).

5 marks. Unseen.

Question 4. All congruences are mod m in what follows. Clearly

$$r_1 \equiv 1$$
, $r_2 \equiv 10r_1 \equiv 10$, $r_3 \equiv 10r_2 \equiv 10^2$, etc.,

and generally $r_{j+1} \equiv 10^j$. It is also clear that the calculation of the decimal places q_i repeats when one of the remainders r_j becomes equal to a previous remainder r_i . I claim that when this happens, i = 1. Proof: If i > 1 and $r_{i+k} = r_i$ ($k \ge 1$) is the first repeat then $10r_{(i+k)-1} \equiv r_{i+k} = r_i \equiv 10r_{i-1}$ and 10 can be cancelled since $2 \nmid m$ and $5 \nmid m$, so that $r_{i-1+k} \equiv r_{i-1}$ and consequently these remainders are equal since both are between 1 and m-1. But this contradicts the assumption that $r_{i+k} = r_i$ is the first repeat.

Thus recurrence starts with $r_{k+1}=r_1=1$, i.e. $q_1=q_{k+1}, q_2=q_{k+2}$ and so on. Thus k is the smallest number such that $10^k\equiv 1$, i.e. the order of 10 mod m is k, which is the length of the period.

9 marks.

Now suppose p is prime, $p \neq 2, p \neq 5$. When the length of the period is 2k we have $r_{2k+1} \equiv 10^{2k} \equiv 1$ so that $(10^k)^2 \equiv 1$ and since the modulus is prime, this implies $10^k \equiv \pm 1$. But it cannot be 1 since the period is 2k not k so $r_{k+1} \equiv -1$, which in view of $0 < r_i < p$ implies $r_{k+1} = p - 1$.

4 marks.

 $r_2 \equiv 10, r_{k+2} \equiv 10^{k+1} = 10^k \cdot 10 \equiv -10 \equiv -r_2, \quad r_{k+3} \equiv 10^{k+1} = 10^k \cdot 10^2 \equiv -10^2 \equiv -r_3,$ etc., i.e. $r_{k+j} + r_j \equiv 0, \ j = 1, 2, \ldots$, but both these are strictly between 0 and p so they must add up to p.

Finally, note that, since $10r_i = pq_i + r_{i+1}$ and $10r_{i+k} = pq_{i+k} + r_{i+k+1}$, we can add these two equations to give: $10(r_i + r_{i+k}) = p(q_i + q_{i+k}) + (r_{i+1} + r_{i+k+1})$, so that $10p = p(q_i + q_{i+k}) + p$ (from the previous result), so that $q_i + q_{i+k} = 9$, as required.

7 marks. All bookwork from lectures.

Question 5.

(i) $\sigma(n) = \text{the sum of the divisors of } n \text{ which are } \geq 1.$

 p^a has divisors $1, p, p^2, \dots p^{a-1}, p^a$, so that $\sigma(p^a) = 1 + p + p^2 + \dots p^a = (p^{a+1} - 1)/(p-1)$

Writing $n = p_1^{n_1} \dots p_k^{n_k}$, we have: $\sigma(n) = \frac{p_1^{n_1+1}-1}{p_1-1} \dots \frac{p_k^{n_k+1}-1}{p_k-1}$.

3 marks. From lectures.

If p is odd and a is odd, then each term of $1 + p + p^2 + \ldots + p^a$ is odd, and there is an even number (a + 1) of terms, so that the sum is even. If p is odd and a is even, then each term of $1 + p + p^2 + \ldots + p^a$ is again odd, but now there is an odd number (a + 1) of terms, so that the sum is odd.

2 marks. Unseen.

(ii) $\sigma(n) = \sigma(2^s)\sigma(2^{s+1}-1)$ [since $(2^s, 2^{s+1}-1) = 1$]. But $\sigma(2^s) = (2^{s+1}-1)/(2-1) = 2^{s+1}-1$, by the formula in (i), and $\sigma(2^{s+1}-1) = 1 + (2^{s+1}-1)$ [since $2^{s+1}-1$ is prime]. So: $\sigma(n) = (2^{s+1}-1)(1+(2^{s+1}-1)) = 2^{s+1}(2^{s+1}-1) = 2(2^s(2^{s+1}-1)) = 2n$. Hence n is perfect. The first three such numbers are: $6 = 2^1 \times (2^2-1), 28 = 2^2 \times (2^3-1)$ and $496 = 2^4 \times (2^5-1)$. 4 marks. Bookwork from lectures.

(iii) We have

$$\sigma(p^a) = \frac{p^{a+1} - 1}{p-1} < \frac{p^{a+1}}{p-1} = p^a \left(\frac{p}{p-1}\right).$$

Also $\frac{p}{p-1} = 1 + \frac{1}{p-1}$, so if $p \ge p_0$ then we have

$$\frac{p}{p-1} = 1 + \frac{1}{p-1} \le 1 + \frac{1}{p_0 - 1} = \frac{p_0}{p_0 - 1}.$$

Applying this to $p_0 = 3$ and 5 we get that

$$p \geq 3 \Longrightarrow \frac{\sigma(p^a)}{p^a} < \frac{p}{p-1} \leq \frac{3}{2}, \qquad q \geq 5 \Longrightarrow \frac{\sigma(q^b)}{q^b} < \frac{q}{q-1} \leq \frac{5}{4}.$$

As p and q are distinct primes, $(p^a, q^b) = 1$, and so:

$$\frac{\sigma(n)}{n} = \frac{\sigma(p^a)\sigma(q^b)}{p^a q^b} < \frac{3}{2} \times \frac{5}{4} = \frac{15}{8} < 2,$$

as required. Hence $\sigma(n) \neq 2n$ so that n is not perfect.

7 marks. Seen similar on exercise sheet.

(iv) Assume that n is perfect, so that $\sigma(n) = 2n$.

Imagine 3 were not a factor of n then the smallest possible values for $p_1, p_2, p_3, p_4, p_5, p_6$ would be 5, 7, 11, 13, 17, 19, so that, as in part (iii), $\frac{\sigma(p_1^{n_1})}{p_1^{n_1}}$, $\frac{\sigma(p_2^{n_2})}{p_2^{n_2}}$, $\frac{\sigma(p_3^{n_3})}{p_3^{n_3}}$, $\frac{\sigma(p_4^{n_4})}{p_4^{n_4}}$, $\frac{\sigma(p_5^{n_5})}{p_5^{n_5}}$, $\frac{\sigma(p_6^{n_6})}{p_6^{n_6}}$ would be, respectively, less than $\frac{5}{5-1}$, $\frac{7}{7-1}$, $\frac{11}{11-1}$, $\frac{13}{13-1}$, $\frac{17}{17-1}$, $\frac{19}{19-1}$. Hence,

$$\frac{\sigma(n)}{n} = \frac{\sigma(p_1^{n_1})\sigma(p_2^{n_2})\sigma(p_3^{n_3})\sigma(p_4^{n_4})\sigma(p_5^{n_5})\sigma(p_6^{n_6})}{p_1^{n_1}p_2^{n_2}p_3^{n_3}p_4^{n_4}p_5^{n_5}p_6^{n_6}} < \frac{5}{4}\frac{7}{6}\frac{11}{10}\frac{13}{12}\frac{17}{16}\frac{19}{18} = \frac{1616615}{829440} < 2,$$

so that $\sigma(n) \neq 2n$ so that n would not be perfect, a contradiction. Hence 3|n, as required.

Also, $\sigma(n) = 2n$ gives $\sigma(p_1^{n_1})\sigma(p_2^{n_2})\sigma(p_3^{n_3})\sigma(p_4^{n_4})\sigma(p_5^{n_5})\sigma(p_6^{n_6}) = 2p_1^{n_1}p_2^{n_2}p_3^{n_3}p_4^{n_4}p_5^{n_5}p_6^{n_6}$. Note that the right hand side is divisible by 2, but not by 4 (since p_1, \ldots, p_6 are all odd), so that precisely one factor of the left hand side is even; but by the last part of (i), this is the same as saying that precisely one of n_1, \ldots, n_6 is odd.

4 marks. Unseen.

Question 6.

- (i) Miller's test on n to base b (where n be an odd positive integer and b coprime to n). We use
- $\langle x \rangle$ to denote the least positive residue of x mod n.
 - Step 1. Let k = n 1, $\langle b^k \rangle = r$. If r = 1 then continue, otherwise n fails the test.

While k is even and r = 1 then repeat the following.

Step 2. Replace k by k/2, and replace r by the new value of $\langle b^k \rangle$.

When k fails to be even or r fails to be 1:

If r = 1 or n - 1 then n passes the test.

If $r \neq 1$ and $r \neq n-1$ then n fails the test.

5 marks. From lectures.

If n=p, prime, then $b^{p-1}\equiv 1\pmod p$ by Fermat's Theorem, and so n passes Step 1. At any application of Step 2, we have k even and $b^k\equiv 1\pmod p$, so that $(b^{k/2})^2\equiv b^k\equiv 1\pmod p$, and so $b^{k/2}\equiv \pm 1\equiv 1$ or $p-1\pmod p$ [using the fact that, for p prime, $x^2\equiv 1$ has only the solutions $x\equiv \pm 1\pmod p$]. If $b^{k/2}\equiv p-1\pmod p$ or k/2 is odd, then p passes Miller's test to base b, otherwise Step 2 is repeated. Therefore, when Miller's test terminates, p will pass.

4 marks. From lectures.

(ii) Check: (6,217)=1, so that Miller's Test can be applied on 217 to base 6. First compute: $6^3\equiv 216\equiv -1\pmod{217}$. This gives, $6^{217-1}\equiv 6^{216}\equiv (6^3)^{72}\equiv (-1)^{72}\equiv 1$, so that 217 is a pseudoprime to the base 6 (given that $217=7\cdot 31$ and so is composite). The exponent 216 is even, so we continue to compute $6^{108}\equiv (6^3)^{36}\equiv (-1)^{36}\equiv 1$. The exponent 108 is still even, so we continue to compute $6^{54}\equiv (6^3)^{18}\equiv (-1)^{18}\equiv 1$, and then $6^{27}\equiv (6^3)^9\equiv (-1)^9\equiv -1\equiv 216$. We stop, since the exponent is odd, and see that the result is indeed 1 or 217-1, with 217 passing Miller's test to base 6. Thus, 217 is a strong pseudoprime to base 6.

Check: (8,65) = 1, so that Miller's Test can be applied on 65 to base 8. First compute: $8^2 \equiv 64 \equiv -1 \pmod{65}$. This gives, $8^{65-1} \equiv 8^{64} \equiv (8^2)^{32} \equiv (-1)^{32} \equiv 1$, so that 65 is a pseudoprime to the base 8 (given that $65 = 5 \cdot 13$ and so is composite). The exponent 64 is even, so we continue to compute $8^{32} \equiv (8^2)^{16} \equiv (-1)^{16} \equiv 1$. The exponent 32 is even, so we continue to compute $8^{16} \equiv (8^2)^8 \equiv (-1)^8 \equiv 1$. The exponent 16 is even, so we continue to compute $8^8 \equiv (8^2)^4 \equiv (-1)^4 \equiv 1$. The exponent 8 is even, so we continue to compute $8^4 \equiv (8^2)^2 \equiv (-1)^2 \equiv 1$. The exponent 4 is even, so we continue to compute $8^2 \equiv -1 \equiv 64 \pmod{65}$. The residue is no longer 1, and so we stop. We see that the last residue is 1 or 65 - 1, so that 65 passes Miller's Test to base 8. Thus, 65 is a strong pseudoprime to base 8.

Check: (2,129)=1, so that Miller's Test can be applied on 129 to base 2. First compute: $2^7 \equiv 128 \equiv -1 \pmod{129}$, so that $2^{129-1} \equiv 2^{128} \equiv 2^{126} \cdot 2^2 \equiv (2^7)^{18} \cdot 2^2 \equiv (-1)^{18} \cdot 4 \equiv 4 \pmod{129}$, giving that 129 is not a pseudoprime to base 2. Miller's Test is immediately failed at Step 1, so that 129 is not a strong pseudoprime to base 2.

7 marks. Seen similar on exercise sheet.

(iv) First note that from $n=2^{2^k}+1$ we get $2^{2^k}+1\equiv 0\pmod n$ and so $2^{2^k}\equiv -1\pmod n$. Since $k\geq 1$, we have that $2^k>k$ and so let $\ell=2^k-k>0$. Then $2^{n-1}=2^{2^{2^k}}=2^{2^{k+\ell}}=2^{2^k2^\ell}=(2^{2^k})^{2^\ell}\equiv (-1)^{2^\ell}\equiv 1\pmod n$, so that n passes Step 1 of Miller's Test. The exponent is even, so we continue to halve the exponent to get: $(2^{2^k})^{2^{\ell-1}}\equiv (-1)^{2^{\ell-1}}\equiv 1, (2^{2^k})^{2^{\ell-2}}\equiv (-1)^{2^{\ell-2}}\equiv 1,\ldots,$ until we get: $(2^{2^k})^{2^0}\equiv (-1)^{2^0}=-1\equiv n-1\pmod n$. The residue is no longer 1, and so we stop. We see that the last residue is 1 or n-1, so that n passes Miller's Test to base 2. **4 marks.** Unseen.

Question 7.

(i) First, note $P_1 = a_0 Q_0 - P_0 = a_0 \cdot 1 - 0 = a_0 = [\sqrt{n}]$ and $Q_1 = (n - P_1^2)/Q_0 = (n - a_0^2)/1 = n - a_0^2$.

Suppose $Q_k = 1$ for some $k \ge 1$. Then $x_k = P_k + \sqrt{n}$ so $a_k = [x_k] = P_k + [\sqrt{n}] = P_k + a_0$. That is, $a_k - P_k = a_0$. Hence,

 $P_{k+1} = a_k Q_k - P_k = a_k - P_k = a_0 = P_1$ and $Q_{k+1} = (n - P_{k+1}^2)/Q_k = (n - a_0^2)/1 = Q_1$. Furthermore, $x_{k+1} = (P_{k+1} + \sqrt{n})/Q_{k+1} = (P_1 + \sqrt{n})/Q_1 = x_1$ and so $a_{k+1} = [x_{k+1}] = [x_1] = a_1$. This means that rows P_1, Q_1, x_1, a_1 and $P_{k+1}, Q_{k+1}, x_{k+1}, a_{k+1}$ are identical and so clearly $a_{k+1} = a_1, a_{k+2} = a_2, \ldots$ So the continued fraction is $[a_0, \overline{a_1, \ldots, a_k}]$.

6 marks. Bookwork from lectures.

(ii) Draw the following table.

Justification of a_0, a_1, a_2 as follows.

 $a_0 = [\sqrt{n}]$. But, for all $d \ge 1$, $(3d)^2 = 9d^2 < 9d^2 + 6d < 9d^2 + 6d + 1 = (3d+1)^2$ and so $3d < \sqrt{9d^2 + 6d} < 3d + 1$, so that $[\sqrt{n}] = 3d$, i.e. $a_0 = 3d$.

$$a_1 = \left[\frac{3d+\sqrt{n}}{6d}\right] = \left[\frac{3d+\left[\sqrt{n}\right]}{6d}\right] = \left[\frac{3d+3d}{6d}\right] = [1] = 1.$$

$$a_2 = [3d + \sqrt{n}] = [3d + [\sqrt{n}]] = [3d + 3d] = [6d] = 6d.$$

The fact that $Q_2 = 1$ signals recurrence, so that $\sqrt{n} = [3d, \overline{1, 6d}]$, as required.

8 marks. Seen similar on exercise sheet.

(iii) d = 2 gives n = 48 i.e. $\sqrt{48} = [6, \overline{1, 12}]$.

Using initial values $p_0 = a_0$, $q_0 = 1$, $p_1 = a_0a_1 + 1$, $q_1 = a_1$ together with the standard recurrence relations: $p_{k+1} = a_{k+1}p_k + p_{k-1}$ and $q_{k+1} = a_{k+1}q_k + q_{k-1}$ for convergents p/q of \sqrt{n} , and the identity $p_k^2 - nq_k^2 = (-1)^{k+1}Q_{k+1}$, we get

k	a_k	p_k	q_k
0	6	6	1
1	1	7	1
2	12	90	13
3	1	97	14
4	12	1254	181
5	1	1351	195

This gives three solutions: x = 7, y = 1 and x = 97, y = 14 and x = 1351, y = 195.

6 marks. Seen similar on exercise sheet.

Question 8.

- (i) Euler's Criterion: Let p be an odd prime not dividing n. Then (ⁿ/_p) ≡ n^{(p-1)/2} (mod p).
 2 marks. Statement of result from lectures.
 (ii) By (i), (⁻¹/_p) ≡ (-1)^{(p-1)/2} ≡ 1 (mod p) ⇔ 2|(p-1)/2 ⇔ 4|(p-1) ⇔ p ≡ 1 (mod 4).
 4 marks. Bookwork from lectures.
 (iii) Gauss' Law of Quadratic Reciprocity: Let p q be two odd primes. If p ≡ 1 (mod 4) or
- (iii) Gauss' Law of Quadratic Reciprocity: Let p, q be two odd primes. If $p \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$ then $(\frac{p}{q}) = (\frac{q}{p})$. If $p \equiv 3 \pmod{4}$ and $q \equiv 3 \pmod{4}$ then $(\frac{p}{q}) = -(\frac{q}{p})$. **2 marks.** Statement of result from lectures.

$$(\frac{-19}{193}) = (\frac{-1}{193})(\frac{19}{193}) = (\frac{19}{193})$$
 [by (ii) since $193 \equiv 1 \pmod{4}$]
 $= (\frac{193}{19})$ [by QR, since $193 \equiv 1 \pmod{4}$]
 $= (\frac{3}{19}) = -(\frac{19}{3})$ [by QR, since 19 and 3 are both $\equiv 3 \pmod{4}$].
 $= -(\frac{1}{3}) = -1$ [since $1 \equiv 1^2 \pmod{3}$, so that $(\frac{1}{3}) = 1$].

 $=-(\frac{1}{3})=-1$ [since $1\equiv 1^2\pmod 3$, so that $(\frac{1}{3})=1$]. Note that, $0^2,1^2,2^2$ are $0,1,1\mod 3$, so that 0,1 are quadratic residues mod 3 but 2 is not. We then have $(\frac{1}{3})=1$ and $(\frac{2}{3})=-1$. For p=3 we have $(\frac{p}{3})\neq 1$. We are given that p is odd, so we do not need to consider p=2. All primes $p\neq 2,3$ are coprime to 12 and so satisfy $p\equiv 1,5,7$ or 11 (mod 12).

```
When p \equiv 1 \pmod{12}, we have p \equiv 1 \pmod{3} and p \equiv 1 \pmod{4}, so that (\frac{3}{p}) = (\frac{p}{3}) [by QR, since p \equiv 1 \pmod{4}] = (\frac{1}{3}) = 1.
```

When $p \equiv 5 \pmod{12}$, we have $p \equiv 2 \pmod{3}$ and $p \equiv 1 \pmod{4}$, so that

 $(\frac{3}{p}) = (\frac{p}{3})$ [by QR, since $p \equiv 1 \pmod{4}$] = $(\frac{2}{3}) = -1$.

When $p \equiv 7 \pmod{12}$, we have $p \equiv 1 \pmod{3}$ and $p \equiv 3 \pmod{4}$, so that

 $(\frac{3}{p}) = -(\frac{p}{3})$ [by QR, since p and q are both $\equiv q \pmod{4} = -(\frac{1}{3}) = -1$.

When $p \equiv 11 \pmod{12}$, we have $p \equiv 2 \pmod{3}$ and $p \equiv 3 \pmod{4}$, so that

 $(\frac{3}{p}) = -(\frac{p}{3})$ [by QR, since p and 3 are both $\equiv 3 \pmod{4}$] $= -(\frac{2}{3}) = -(-1) = 1$.

So, in summary, we have that $(\frac{3}{p}) = 1$ iff $p \equiv \pm 1 \pmod{12}$, as required.

5 marks. Unseen.

(iv) Let p_1, p_2, \ldots, p_k be primes, all congruent to $-1 \pmod{12}$. Let $n = 3(2p_1p_2 \ldots p_k)^2 - 1$. Note that $n = 12(p_1p_2 \ldots p_k)^2 - 1 \equiv -1 \pmod{12}$. Now, let p be prime and p|n. Then $p|3(2p_1p_2 \ldots p_k)^2 - 1$ and so $3(2p_1p_2 \ldots p_k)^2 \equiv 1 \pmod{p}$. But p is not a factor of $2p_1p_2 \ldots p_k$ (since if $p|2p_1p_2 \ldots p_k$, then the fact that p|n would also give $p|n - 3(2p_1p_2 \ldots p_k)^2 = -1$, that is: p|(-1), a contradiction) giving that $2p_1p_2 \ldots p_k$ has an inverse $\alpha \mod p$. Multiplying both sides of $3(2p_1p_2 \ldots p_k)^2 \equiv 1 \pmod{p}$ by α^2 gives $3 \equiv \alpha^2 \pmod{p}$, and so $(\frac{3}{p}) = 1$. Hence $p \equiv \pm 1 \pmod{12}$ [by part (iii)]. Finally, note that it is impossible for all prime factors of n to be congruent to $1 \pmod{12}$ [since the product of numbers congruent to $1 \pmod{12}$ is congruent to $1 \pmod{12}$, whereas $n \equiv -1 \pmod{12}$]; hence at least one prime p dividing $p \equiv -1 \pmod{12}$ [note that p is distinct from p_1, p_2, \ldots, p_k , satisfying $p \equiv -1 \pmod{12}$ [note that p is distinct from p_1, p_2, \ldots, p_k , since, if $p = p_i$ then $p|n = 12(p_1p_2 \ldots p_k)^2 - 1$ and $p|12(p_1p_2 \ldots p_k)^2$, implying p|(-1), a contradiction]. Imagine there were only finitely many primes congruent to $-1 \pmod{12}$, and that p_1, \ldots, p_k lists all of them; the above argument shows the existence of a new such prime p, a contradiction; hence there are infinitely many such primes, as required.

7 marks. Unseen, but broadly similar in strategy to a problem on an exercise sheet.