Solutions to MATH342 (Number Theory) January 2003 examination

Question 1.
(i) 22 = z (mod 1000) <= =2 =z (mod 8 and 125). The forward direction is trivial, since
23|23 . 5% and 53|23 - 53. The reverse direction holds because (23,5%) = 1, using the general result
that a = b (mod m and n) and (m,n) =1 = a = b (mod mn).
2 marks. Seen similar in lectures.

We have to solve z(z — 1) = 0 (mod 23 and mod 53). We have p*|z(z — 1) = p*|z or p¥|z — 1
(p prime), since (z,z — 1) = 1 (using general result that p*|ab and (a,b) = 1 = p¥|a or p*|b).
Hence: z =0or 1 (mod 8) and z =0 or 1 (mod 125). There are thus 4 cases:
Case (a). £ =0 (mod 8) and z = 0 (mod 125). Holds <= z =0 (mod 1000).
Case (b). £ =0 (mod 8) and z = 1 (mod 125). From the first equation, z = 8k. Substituting
this into the second equation gives: 8k = 1 (mod 125). Need to find the inverse of 8 mod 125:

( 1 0 125 > . ( 1 —15 5 ) . ( 1 —15 5 ) R ( 2 31 2 ) R ( 2 -31 2 >
01 8 0O 1 8 -1 16 3 -1 16 3 -3 47 1 )°
The second line of the last matrix tells us: (—3) - 125 + 47 - 8 = 1, so that 47 is an inverse of 8
mod 125. Multiplying both sides of 8k = 1 (mod 125) by 47 gives: k = 47 (mod 125); that is:
k = 47 4+ 125¢. Substituting this into x = 8k gives: = = 8(47 + 125¢) = 376 + 1000¢, which is
the same as: z = 376 (mod 1000).
Case (c). £ =1 (mod 8) and z = 0 (mod 125). From the first equation, x = 125k. Substituting
this into the second equation gives: 125k = 1 (mod 8), so that: 5k = 1 (mod 8). Multiplying
both sides by 5 then gives: 25k = 5 (mod 8), so that £ = 5 (mod 8); that is: k = 5 + 8.
Substituting this into z = 125k gives: z = 125(5 + 8¢) = 625 + 10004, which is the same as:
z = 625 (mod 1000).
Case (d). £ =1 (mod 8) and z =1 (mod 125). Holds <= z =1 (mod 1000).

In summary the final solution is: z = 0,1, 376, or 625 (mod 1000).
8 marks. Seen similar (but simpler) in lectures.

(ii) If z is divisible by 3, then z = 3k for some integer k, so that: z3 = 27k® = 0 (mod 9).
If z is not divisible by 3, then z = 3k 4 1 for some integer k, so that: z3 = (3k +1)3 =
27k3 £27k? + 9k + 1 = +1 (mod 9). Hence, in all cases, we have 2° = 0,1, or —1 (mod 9). This
gives 27 possibilities to consider for z® + 33 4 23:
-1-1-1,-1-14+0,-1-1+1,-140-1,-14+0+0, -14+0+1, =1+1-1, -1+140, —14+1+1,
0-1-1,0-1+0,0-14+1,04+0-1,0+04+0,0+0+1,0+1—1,04+1+0,0+1+1,
1-1-11-140,1-14+1,140-1,14+404+0,14+0+1,14+1-1,14+1+0,1+1+1,
which are congruent mod 9 to: 6,7,8,7,8,0,8,0,1,7,8,0,8,0,1,0,1,2,8,0,1,0,1,2,1,2,3, re-
spectively. None of these is 4 (mod 9), so that 2® + y3 + 23 is never of the form 9m + 4.
5 marks. Unseen, although similar ideas seen.

(iii) Any z satisfies: = = 0,1,2,3,4,5 or 6 (mod 7), so that 22 = 02,12,22,32,42, 52,62 =
0,1,4,2,2,4,1 = 0,1,2 or 4 (mod 7), and the same for 2. Therefore, there are 16 cases for
72 +y?, namely: 0+0,0+1,0+2,0+4,1+0,1+1,14+2,1+4,2+0,24+1,2+2,2+4,44+0,4+
1,4+ 2,4 + 4, which are congruent (mod 7) to: 0,1,2,4,1,2,3,5,2,3,4,6,4,5, 6, 1, respectively.
The only case where 22 + y? = 0 (mod 7) is the case when both 22 = 0 and y? = 0 (mod 7);
that is: £ = 0 and y = 0 (mod 7). Suppose that 22 + 32 = 7(7m + 1). Then 22 + 3> = 0,
giving that z = 0 and y = 0 (mod 7), by the previous result; say: z = 7r and y = 7s. Then
72(r? 4+ s%) = 7(Tm + 1), so that 7(r? 4+ s?) = (Tm + 1), which is impossible, since the LHS is
divisible by 7, but not the RHS.

5 marks. Unseen, and a new idea.



Question 2.
(i) Fermat’s Theorem states that:
(a) If p is prime and p does not divide a then a?~! =1 (mod p).
(b) For any a (whether p divides a or not), we have: a? = a (mod p).

Proof.

(a) Consider a,2a,...,(p —1)a (x). For any j in the range 1 < j < (p — 1), we have p/ j.
Since also p/ a, it follows that p/ ja; that is, none of the numbers in (*) is congruent to 0
(mod p). Also, imagine ia = ja (mod p) for i # j (say, ¢ > j) and 1 < 4,5 < (p — 1);
then (i — j)a = 0 (mod p) and so p | ( — j)a; but pf (i — j), since 0 < i — j < p, and so
pla, a contradiction. Hence ia # ja whenever ¢ # j, 1 < 4,5 < (p—1). It follows that the
numbers: a,2a,...,(p — 1)a are all distinct mod p and none are 0 mod p. For each of the p — 1
numbers a, 2a, ..., (p — 1)a there are only p — 1 possibilities mod p: 1,2,...,p — 1. It follows
that {a,2a,...,(p — 1)a} is the same set mod p as {1,2,...,p — 1}, possibly with a different
order. Hence a-2a-...-(p—1)a=1-2-...-(p—1); that is: (p —1)!la?~! = (p — 1)! (mod p).
Clearly ((p —1)!,p) = 1 [since each of 1,...,p — 1 is coprime to p], and so a? ! = 1 (mod p), as
required.

(b) If pf a, then we have already shown a?~! = 1 (mod p). Multiplying both sides by a gives
aP = a (mod p). If p | a then a? = a (mod p) is trivially true, since a? = 0 and a = 0 (mod p).
5 marks. Bookwork from lectures.

Using Fermat’s Theorem, since 17} 3, we have: 3'® =1 (mod 17) and so 3% = (316)3 . 32
13.9 =9 (mod 17). Similarly, since 175, we have: 5! =1 (mod 17) and so 5°° = (516)3 .52
1%.25 = 8 (mod 17). Hence, 3°° + 5% = 9 +8 = 17 = 0 (mod 17), giving that 3°0 + 5% i
divisible by 17.

3 marks. Seen similar on exercise sheet.

wn

(ii) Let n = 7% + 1. If 7/ r then by Fermat’s Theorem, r® = 1 (mod 7), so that n = % + 1 =
1+1=2 (mod 7). If 7|r then 7 = 0 (mod 7), so that n =76 +1=0%+1=1 (mod 7). In all
cases, n Z 0 (mod 7); that is: n is never divisible by 7.

If 3/ r then by Fermat’s Theorem, 72 = 1 (mod 3), so that n = (r?)>+1 = 13+1 = 2 (mod 3).
If 3|r then » = 0 (mod 3), so that n =% +1=0%+1 =1 (mod 3). In all cases, n Z 0 (mod 3);
that is: n is never divisible by 3.
5 marks. Seen similar on a exercise sheet.

Imagine n were a multiple of 11, so that n =75+ 1 = 0 (mod 11). Then 76 = —1 (mod 11).
If 11 / r then by Fermat’s Theorem, 7! = 1 (mod 11), and so 7% -7® = 1 (mod 11). Substituting
7% = —1 (mod 11) into this last equation gives: 7*-(—=1) = 1 (mod 11), and so: 7* = —1 (mod 11);
cubing both sides gives: r'2 = (=1)> = —1 (mod 11). On the other hand, squaring both
sides of r® = —1 (mod 11) gives r'2 = (—=1)2 = 1 (mod 11), a contradiction. If 11|r then
r® = 0% = 0 (mod 11), which immediately contradicts 7® = —1 (mod 11). In either case, we
have a contradiction, so that is not possible for n to be a multiple of 11.
3 marks. Seen similar on a exercise sheet (although this one is slightly harder).

Imagine n = r% + 1 were a multiple of p, where p is a prime of the form p = 12m + 7.
Then n = 7 + 1 = 0 (mod p). Then r® = —1 (mod p). If p/r then by Fermat’s Theorem,

rP~! = 1 (mod p); that is: 712™*% = 1 (mod p). But, since r® = —1 (mod p), we also have:
pl2m+6 = (p6)2mtl = (_1)2m+1 = _1 (mod p), a contradiction. If p|r then 76 = 0% = 0 (mod p),
which immediately contradicts 7® = —1 (mod p). In either case, we have a contradiction, so

that is not possible for n to be a multiple of p.
4 marks. Unseen.



Question 3.

(i) For n > 1 define ¢(n) to be the number of integers z satisfying 1 < z < n and (z,n) = 1. For
a prime p and a > 1, the numbers in 1,2, ..., p® which are not coprime to p® are the multiples of
p, namely: p,2p,...,p% of which there are p®/p = p®~! in number. These need to be removed
from1,2,...,p% lea,vingpa—p‘“1 numbers coprime to p®. Hence ¢(p®) = p®—p? ! = p* 1(p—1),
as required. Writing n = p7"...p.* (prime power factorization),

$(n) =pi*"(p = 1) ... pp* " (px — 1)

4 marks. Bookwork.

If p is prime and p|n then p is one of the p; in the above prime power factorization of n, and
so p—1 = p; — 1 occurs as a factor of the formula for ¢(n), giving that (p —1)|¢(n). If p is prime
and p?|n then again p is one of the p; in the above prime power factorization of n, and n; > 2,
so that p—1 = pg”_l occurs as a factor of the formula for ¢(n), giving that p™ !|é(n), and so
p|é(n), since n; —1 > 1.

2 marks. Unseen.

(ii) We have: 10! =1-2-3-4-5-6-7-8-9-10=2-3-22.5-(2-3)-7-23.32.(2.5) =
- 3% .52 .7, which is the prime power factorization of 10!. So, by the formula, #(10!) =
27(2 —1)33(3 — 1)5!(5 — 1)7°(7 — 1) = 829440. The binomial coefficient a = (21 - 22 - 23 - 24 -
25)/(1-2-3-4-5)=(3-7-2-11-23-23-3-5%)/(1-2-3-22.5)=2-3-5-7-11-23, so that
d(a) =2°(2-1)3°(3 — 1)5°(5 — 1)7°(7 — 1)11°(11 — 1)23°(23 — 1) = 10560.
6 marks. Unseen.

(iii) If n is divisible by an odd prime p, then (p — 1)|¢(n) so that ¢(n) is even and cannot be of
the form 3%. If n is not divisible by any odd prime p, the n must be a power of 2, say n = 27;
but then ¢(n) = 27~1, which again is not of the form 3*.

In seeking odd primes p such that ¢(p) is a power of 2, we use the fact that ¢(p) =p—1, so
this requires p — 1 to be a power of 2; that is, p must be a prime which is one more than a power
of 2. The first few numbers one more than a power of 2 are: 20 +1,2" +1,22 41,23 +1,2% 41,
which are: 2,3,5,9,17, of which 2,3,5,17 are prime. However, we are asked for odd primes, so
we exclude 2, and we have found three values of prime p = 3, 5, 17 satisfying the condition that
#(p) is a power of 2. Check: ¢(3) = 2%, ¢(5) = 22, and ¢(17) = 2%.

It is natural to look at n of the form n = 3% - p, where p is one of the primes just found, since
then ¢(n) will have only 2 and 3 as prime factors; this will be a power of 6 when 2 and 3 occur
to the same power. For p = 3, we try n = 3% -3 = 3¥!, for which ¢(n) = 3%¥(3 —1) = 3¥ . 2;
we need take k = 1 to get n = 9 and ¢(n) = 6. For p = 5, we try n = 3% . 5, for which
d(n) =3F1(3—-1)(5—1) = 3k1.23 we need take k = 4 to get n = 3*-5 = 405 and ¢(n) = 6.
For p = 17, we try n = 3¥ - 17, for which ¢(n) = 3¥71(3 — 1)(17 — 1) = 3*¥~1 . 25; we need take
k=6 to get n = 3517 = 12393 and ¢(n) = 6°. In summary, we have found: n = 9,405, 12393.
8 marks. Unseen.



Question 4.
(i) Miller’s test on n to base b (where n be an odd positive integer and b coprime to n). We use
(z) to denote the least positive residue of  mod n.

Step 1. Let k =n — 1, (b¥) = r. If r = 1 then continue, otherwise n fails the test.

While £ is even and r = 1 then repeat the following.

Step 2. Replace k by k/2, and replace r by the new value of (b*).

When £ fails to be even or r fails to be 1:

If r=1or n— 1 then n passes the test.

If r #1 and r # n — 1 then n fails the test.

5 marks. From lectures.

If n = p, prime, then »~! = 1 (mod p) by Fermat’s Theorem, and so n passes Step 1. At
any application of Step 2, we have k even and b* = 1 (mod p), so that (b¥/2)2 = b¥ = 1 (mod p),
and so b¥/2 = +£1 = 1 or p — 1 (mod p) [using the fact that, for p prime, 22 = 1 has only the
solutions z = +1 (mod p)]. If b¥/2 = p — 1 (mod p) or k/2 is odd, then p passes Miller’s test to
base b, otherwise Step 2 is repeated. Therefore, when Miller’s test terminates, p will pass.

4 marks. From lectures.

(ii) We say that n is a pseudoprime to base b if n is composite and " = b (mod n). When
(b,n) = 1 this is the same as: b"~! = 1 (mod n). We say that n is a strong pseudoprime to
base b if n is composite and n passes Miller’s Test to base b.

2 marks. Definitions from lectures.

(iii) Check: (2,645) = 1, so that Miller’s Test can be applied on 645 to base 2. First compute:
21 = 16384 = 259, 2% = (21*)2 = 2592 = 67081 = 1 (mod 645). This gives, 2641 = 2644 =
(228)2 = 123 = 1, so that 645 is a pseudoprime to the base 2 (given that 645 = 3 -5 - 43 and
so is composite). The exponent 644 is even, so we continue to compute 2322 = (228)11. 214 =
1! . 259 = 259; this is neither 1 nor 645 — 1, and so we stop, with 645 failing (at Step 2) of
Miller’s test to base 2. Thus, 645 is not a strong pseudoprime to base 2.

Check: (3,121) = 1, so that Miller’s Test can be applied on 121 to base 3. First compute:
3% = 243 = 1 (mod 121). This gives, 312171 = 3120 = (35)2% = 124 = 1, so that 121 is a
pseudoprime to the base 3 (given that 121 = 112 and so is composite). The exponent 120
is even, so we continue to compute 350 = (3°)12. 112 = 1. The exponent 60 is even, so we
continue to compute 330 = (35)6.16 = 1. The exponent 30 is even, so we continue to compute
315 = (35)3.1% = 1. The exponent 15 is odd, and so we stop, with 121 passing Miller’s Test to
base 3. Thus, 121 is a strong pseudoprime to base 3.

Check: (2,33) = 1, so that Miller’s Test can be applied on 33 to base 2. First compute:
25 = 32 = —1 (mod 33), so that 23371 = (25)6.22 = (-1)%.4 = 4 (mod 33), giving that 33 is
not a pseudoprime to base 2. Miller’s Test is immediately failed at Step 1, so that 33 is not a
strong pseudoprime to base 2.
7 marks. Seen similar on ezercise sheet.

(iv) Since n is a pseudoprime to base a and base ab, it follows that n is composite, with
a"™ = a (mod n) and (ab)™ = ab (mod n); that is: a"b"™ = ab (mod n). Substituting the first
congruence into the LHS of the last gives: ab™ = ab (mod n). Cancelling a from both sides
(allowable, since (a,n) = 1) then gives: ab™ = ab (mod n), so that n is a pseudoprime to base b.
2 marks. Unseen.



Question 5.
(i) All congruences are mod m in what follows. Clearly

=1, ro=10r; =10, r3 =107y = 102, etc.,
and generally 711 = 107. Tt is also clear that the calculation of the decimal places ¢; repeats
when one of the remainders r; becomes equal to a previous remainder 7;. I claim that when
this happens, i = 1. Proof: If i > 1 and ryy4 = r; (k > 1) is the first repeat then 107 )1 =
Tivk = T3 = 10r;_1 and 10 can be cancelled since 2/m and 5/ m, so that r;_14, = 7—1 and
consequently these remainders are equal since both are between 1 and m—1. But this contradicts
the assumption that r;; = r; is the first repeat.

Thus recurrence starts with rpy1 =r1 =1, i.e. ¢1 = gx+1,92 = qr+2 and so on. Thus k is
the smallest number such that 10¥ = 1, i.e. the order of 10 mod m is k, which is the length of
the period.

8 marks. Bookwork from lectures.

(i) z¥ = 1 (mod mn) <= z* =1 (mod m) and z*¥ = 1 (mod n) [since (m,n) = 1] <
ord,,z|k and ord,z|k <= k is a common multiple of ord,,z and ord,z <= k is a multiple
of [ord,,z,ord,z]. Hence, ord,,z = [ord,z,ord,z], as required.

3 marks. Seen similar in lectures.

(iii) As usual, ord,;10 is the smallest & > 0 for which 10* = 1 (mod m). In each case, by (i), this
is the same as the decimal period length of % We can also use the general result that ord,,a is
always a factor of ¢(m) for any a,m.

For m = 7, we know that ord;10 is a factor of ¢(7) = 6, and so the only possibilities are
1,2,3,6. Compute powers of 10 mod 7:

10! =3, 102 =2, 103 = 6 (mod 7),
which already is enough to exclude 1, 2, 3 as possible values of ord;10, so that ord;10 = 6, which
must be the length of the decimal period of %

For m = 23, we know that ords310 is a factor of ¢(23) = 22, and so the only possibilities are
1,2,11,22. Compute powers of 10 mod 23:

10" = 10, 102 = 8, 10° = 11, 10* = 18, 10° = 19, 106 = 6, 107 = 14, 10® = 2, 10° = 20,
10 = 16, 10! = 22 (mod 23),
which already is enough to exclude 1,2, 11 as possible values of ords310, so that ordes10 = 22,
which must be the length of the decimal period of %

For m = 161 = 7 - 23, we have from part (ii) that ordi4110 is the least common multiple
of ord710 and ords310; that is: the least common multiple of 6 and 22, which is 66, which is
therefore the length of the decimal period of 161;—1.

6 marks. Seen similar in lectures.

(iv) The length of the decimal period of % is ordyz,10, which by (ii) is ord7,10 = [ord710, ord,10].
We also know that ord;10|¢(7) and ord,10|¢(p). If ord710 = ¢(7) = 6 and ord,10 = ¢(p) = p—1
then ordy,10 = [ord710, ord,10] = ord710 ord,10/(ord710, ord,10) = 6(p—1)/(6,p—1) < 3(p—1),
since p — 1 is even and (6,p — 1) > 2. If ord710 # ¢(7) or ord,10 # ¢(p) then ord710 < ¢(7)/2
or ordy10 < ¢(p)/2, so that ordz,10 = [ord;10,0rd,10] = ord710 ord,10/(ord;10,0rd,10) <
ord710 ord,10 < 6(p—1)/2 = 3(p — 1). In either case, we have the period length bounded above
by 3(p — 1), as required.

3 marks. Unseen.



Question 6.

(i) d(n) = the number of the divisors of n which are > 1. o(n) = the sum of the divisors of n
which are > 1.

p? has divisors 1,p,p?,...p% L, p%, of which there are a + 1, so that d(p®) = a + 1 and o(p?) =
l+p+p*+...p°= (" =1)/(p - D). 1 "
Writing n = p{* ... pp*, we have: d(n) = (n1 +1)...(ngx +1) and o(n) = pl;:ifl ...p’“:kffl

4 marks. From lectures.

(ii) Here is a table of values of o(p®) for small p and a. Since all rows and columns are strictly
increasing, any further entries would be greater than 96 and so are irrelevant.

D —

al 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 .. 89 97
1 3 4 6 8 12 14 18 20 24 30 32 38 42 44 48 .. 90 98
2 7 13 31 57 133
3| 15 40 156
4 31 121
5| 63
6 | 127

Now the following give all the ways of writing 96 as a product of entries in different columns
of the table: 3-4-8 or 3-32 or 4-24 or 8- 12. These give
n=2'-3".7" 21.311 31.23' 7'.11', that is: n = 42,62,69,77 are the only solutions to
o(n) = 96.
9 marks. Seen similar on exercise sheet.
(iii) Since d(n) = (n1+1)(ng+1)..., the only way for d(n) = 14 is if there exists n; +1 = 14 and
all other n; = 0, or when there exist nj+1 = 7,n;+1 = 2 and all other n; = 0. These correspond
to n have the form: n = p'? for some prime p, or n = pS¢*, for some distinct primes p,q. The
smallest number of the first type is 2! = 8192. The smallest number of the second type is
2631 = 192. So, the smallest n such that d(n) = 14 is n = 192.
2 marks. Seen similar on exercise sheet.
(iv) Since 25,33, p, q are coprime, we have:

2613t —1p?—142 -1
2-13-1p—-1g4g-1

a(n) = o(2°)a(3%)o(p)o(q) =63-40- (p+ 1)(g + 1),

so that the given equation o(n) = 4n becomes: 63-40-(p+1)(¢+1) = 4-2°-3%.p-q. Dividing
both sides by 72 then gives: 35(p+1)(g+1) = 48pq. So, 35|48pg, giving 35|pq, since (35,48) = 1.
This imples: 5|pg, so that 5|p or 5|g; that is, either p = 5 or ¢ = 5, since p, ¢ are prime. Similarly,
7|pq and so p =T or ¢ = 7, since p, q are prime. Since p < ¢, the only possibility is p = 5,g =7
and indeed we see that these values of p, g do satisfy the equation 35(p+ 1)(g + 1) = 48pq, since
both sides evaluate to 1680.

5 marks. Seen similar on exercise sheet.



Question 7.
(i) First, note P, = agQo — Py =ap-1—0=ap = [\/ﬁ]
and Q1 = (n — P?)/Qo = (n—ad)/1 =n —dd.

Suppose Q = 1 for some k > 1. Then zy = Py + +/n so ax, = [zx] = P + [v/n] = Py + ao.
That is, a — P, = ag. Hence,

Piy1 = apQr — Py =ar — Py = ap = P and Q41 = (n — P2,,)/Qr = (n — a3)/1 = Q1.
Furthermore, Tyl = (Pk:—i—l + \/ﬁ)/Qk_H = (P1 + \/ﬁ)/Ql = 1 and so a1 = [xk+1] = [.%‘1] =
a1. This means that rows Py, Q1,71,a1 and Py, Qk+1,Zk+1,0k+1 are identical and so clearly
ax+1 = Q1,042 = G2, .... So the continued fraction is [ag, a1, .-, G-

6 marks. Bookwork from lectures.

(ii) Draw the following table.

k| P Qu Tk Ok
o] 0 1 N
1|24 2d 250 9

2| 2d 1 2d++/n 4d
Justification of ag, a1, a9 as follows.
ap = [v/n]- But, for all d > 1, (2d)? = 4d® < 4d? + 2d < 4d® +4d + 1 = (2d + 1)? and so
2d < V4d? + 2d < 2d + 1, so that [\/n] = 2d, i.e. ap = 2d.

al = [2d—2|—d\/ﬁ] _ [2d+2b/ﬁ}] _ [2(124:124] = [2] =2.

az = [2d + /n] = [2d + [\/n]] = [2d + 2d] = [4d] = 4d.
The fact that Q2 = 1 signals recurrence, so that /n = [2d, 2, 4d)], as required.
8 marks. Seen similar on exercise sheet.

(iii) d = 3 gives n = 42 i.e. V42 = [6,2,12].

Using initial values pg = ag,q0 = 1,p1 = apa1 + 1,¢1 = a1 together with the standard recurrence
relations: pgi1 = ag+1Pk + Pk—1 and ggy1 = ak+19k + gr—1 for convergents p/q of 4/n, and the
identity p? — ng2 = (—1)*"1Qx41, we get

k| ag Dk qk

0| 6 6 1
1] 2 13 2
2112 162 25
3| 2 337 52
4112 4206 649

5| 2 8749 1350

This gives three solutions: z = 13,y =2 and z = 337,y = 52 and z = 8749,y = 1350.
6 marks. Seen similar on exercise sheet.



Question 8.
(i) Euler’s Criterion: Let p be an odd prime not dividing n. Then (%) = nP—1/2 (mod p).
2 marks. Statement of result from lectures.
(i) By (i), (31) = (-1)®/2 =1 (mod p) <= 2/(p—1)/2 <= 4|(p—1) <= p=1(mod 4).
3 marks. Bookwork from lectures.
(iii) By (i), (%) = 2(p=1/2 (mod p). Now note that, if 1 < r,s < (p—1)/2 and 2r = +2s (mod p),
then r = +s (mod p) [since (2,p) = 1] and so 7 = s. Hence the numbers (*) given by:
2-1,2-2,...2-(p—1)/2 have least absolute residues mod p with distinct absolute values. Let
(**) be the same list of numbers, except with each number replaced by its least absolute residue
mod p, which gives (p — 1)/2 nonzero numbers of distinct absolute value, and so their absolute
values must be 1,2,...,(p — 1)/2 in some order. Equating the product of (*) with that of (**)
mod p, and cancelling 1-2-...- (p — 1)/2, gives that 27-1)/2 = (—=1)™ (mod p), where m is
the number of minus signs in (**), which is the same as the number of members z of (*) in the
range (p —1)/2 < z < p. Any odd prime p = £1,43 (mod 8), and in each case, we need to
check whether m is even, in which case (2) = 1, or m is odd, in which case (2) = —1.
Case 1. p =1 (mod 8), that is p = 8k + 1 for some k. Then (p 1)/2 = 4k, and (*) has precisely
the 2k numbers 4k + 2,4k + 4, ..., 8k in the range (p — 1)/2 < x < p. Thus m = 2k is even, and
so () =1.
Case 2. p = —1 (mod 8), that is p = 8k — 1 for some k. Then (p —1)/2 = 4k — 1, and (*) has
precisely the 2k numbers 4k, 4k + 2,...,8k — 2 in the range (p — 1)/2 < z < p. Thus m = 2k is
even, and so (2) = 1.
Case 3. p = 3 (mod 8), that is p = 8k + 3 for some k. Then (p — 1)/2 = 4k + 1, and (*) has
precisely the 2k + 1 numbers 4k + 2,4k +4,...,8k + 2 in the range (p — 1)/2 < =z < p. Thus
m = 2k + 1 is odd, and so (%) = -1
Case 4. p = —3 (mod 8), that is p = 8k — 3 for some k. Then (p — 1)/2 = 4k — 2, and (*)
has precisely the 2k — 1 numbers 4k,4k + 2,...,8k — 4 in the range (p — 1)/2 < z < p. Thus
m = 2k — 1 is odd, and so (%) =-1.
8 marks. Bookwork from lectures.
(iv) Gauss’ Law of Quadratic Reciprocity: Let p,q be two distinct odd primes. If p = 1 (mod 4)
or ¢ =1 (mod 4) then (%’) = (1%). If p =3 (mod 4) and ¢ = 3 (mod 4) then (%’) = —(1%).

(5) = (%)(%) = () [by (iii) since 79 = —1 (mod 8)]

= —(2) [by QR, since 79 and 3 are =3 (mod 4)]

%) = —1 [since 1 = 12 (mod 3)].
ZH) () = — (&%) Dby (i), since 151 = 3 (mod 4)]
=) [by QR, since 11 and 151 are = 3 (mod 4)]

:(ﬁ):( ) = (—1)% [by (111)smce11—3(m0 8) = —1.
When p = 1 (mod 4): (7)) = (7)) = (3) by ()] = (§) [by QR].
When p =3 (mod 4): (_73) (5)(G) =—() by ()] = (§) by QR.

) ¢ ) Now 0%,12,22 are 0,1,1 mod 3, so that 0,1 are quadratic
residues mod 3 but 2 is not. When p = 1 (mod 3), we therefore get (773) =(&) =3 =1
When p = 2 (mod 3), we simlarly get (_—3) = (%) = (%) = —1. The case p =0 (mod 3) can only
happen when p = 3 and in this case (;3) = 0. In summary, (3 3) =1 <= p=1 (mod 3).

7 marks. Unseen.



