Math 329 — Jan 2000 Exam

"Numerical Linear Algebra and its Applications"

Full marks are given to the best answers of FIVE questions.

Each question carries a total of 20 marks that are distributed as stated.

I (20 marks)

- 1. For an $n \times n$ real matrix A, a definition of its eigenvalues $\lambda_i(A)$ is given by $Ax_i = \lambda_i x_i$, where x_i is a nonzero vector. Using this definition and norm definitions, prove the following for any index i
 - (a) $|\lambda_i| \le ||A||_p$ for any p-norm; [5 marks]
 - (b) $\lambda_i(A^{-1}) = 1/\lambda_i(A)$ if $\lambda_i(A) \neq 0$. [5 marks]
- 2. Given that for some $A_{3\times 3}$, $\lambda_i(A^T A) = [0.9, 23.6, 25]$:
 - (a) compute $||A||_2$; [5 marks]
 - (b) find the spectral radius $\rho(A^{-1}A^{-T})$ where $A^{-T}=(A^T)^{-1}$. [5 marks]

II (20 marks)

Given the symmetric matrix

$$A = \left(\begin{array}{cccc} -15 & 0 & 3 & 0 \\ 0 & 4 & 0 & 0 \\ 3 & 0 & 2 & -2 \\ 0 & 0 & -2 & 14 \end{array}\right),$$

1. Use the Householder transforms to tridiagonalise A i.e. find an orthogonal matrix P such that $P^TAP = T$ is tridiagonal.

Hint. Take sign(0) = +1. [10 marks]

2. Use the Sturm sequence method or otherwise to isolate the eigenvalues of A. [10 marks]

III (20 marks)

Given the symmetric matrix A and the vector b:

$$A = \begin{pmatrix} 6 & 2 & 0 \\ 2 & 5 & 1 \\ 0 & 1 & 7 \end{pmatrix}, \quad \text{and} \quad b = \begin{pmatrix} 2 \\ -5 \\ 19 \end{pmatrix},$$

find an approximate solution to the system Ax = b by minimising the functional

$$\Phi(x) = \frac{1}{2}x^T A x - x^T b$$

along two successive search directions

$$p_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
 and $p_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$.

Use $x^{(0)} = [1 \ 1 \ 1]^T$.

IV (20 marks)

Let x_1, x_2, x_3, x_4 be four independent eigenvectors of a symmetric matrix $A_{4\times 4}$ (corresponding to four distinct eigenvalues $\lambda_1, \lambda_2, \lambda_3, \lambda_4$). Take $q_1 = \overline{q}_1/\|\overline{q}_1\|_2$ (with $\overline{q}_1 = \sum_{j=1}^4 x_j$) as a known vector.

- 1. Derive the formulae of the Lanczos method for this matrix A with the starting vector q_1 ; [10 marks]
- 2. Determine the dimension of the Krylov space [10 marks]

$$\kappa(q_1, A, 4) = span(q_1, Aq_1, A^2q_1, A^3q_1).$$

Hint. The following Vandermonde matrix is non-singular:

$$V = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 & \lambda_4^2 \\ \lambda_1^3 & \lambda_2^3 & \lambda_3^3 & \lambda_4^3 \end{pmatrix}.$$

$m V = (20 \; marks)$

Consider a finite difference solution of the following differential equation for u = u(x, y)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = x^2 y + 1,$$

defined in an L-shaped domain (see the boundary Γ in Figure 1) with zero boundary conditions (i.e. $u|_{\Gamma} = 0$); there will be 7 unknowns with the uniform mesh as set.

Figure 1: An L-shaped domain

- 1. Find a new node ordering suggested by the Cuthill-Mckee algorithm; [10 marks]
- 2. Write down the 7×7 linear system of equations for the new ordering. [10 marks]

VI (20 marks)

Given the cubic polynomial $f_3(x) = x^3 - 2x^2 - 400x + 800$,

- 1. Find its companion matrix A such that $det(xI A) = f_3(x)$; [7 marks]
- 2. Use 1 step of the QR method (no shift) to obtain the approximate roots of $f_3(x)$. (Keep at least 3 significant figures.) [13 marks]

VII (20 marks)

1. Solve the following polynomial equation for λ

[10 marks]

$$f_4(\lambda) = \begin{vmatrix} w_1 & w_2 & (\lambda - 2) & -1 & w_3 \\ (\lambda + 1) & 46 & 0 & 0 & 0 \\ 45 & 10 & 0 & 0 & (\lambda - 4) \\ 0 & (\lambda - 3) & 0 & 0 & 0 \\ 10 & 40 & 2 & (\lambda - 5) & w_4 \end{vmatrix} = 0,$$

where w_j 's are some (real) scalars.

2. Find the companion matrix B for the above $f_4(\lambda)$;

[6 marks]

3. If there exist some known and non-singular matrices L_j, U_j such that

$$L_5L_4L_3L_2L_1BU_1U_2U_3U_4U_5 = I,$$

find the inverse matrix B^{-1} in terms of L_j, U_j .

[4 marks]