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INSTRUCTIONS TO CANDIDATES

Full marks can be obtained for complete answers to FIVE questions. Only the
best five answers will be taken into account.

The following results may be used freely as required

Γµ
αβ =

1

2
gµν(gνα,β + gνβ,α − gαβ,ν)

Rµ
νσρ = Γµ

νρ,σ − Γµ
νσ,ρ + Γµ

ασΓα
νρ − Γµ

αρΓ
α
νσ

Rµν = Rσ
µσν , R = Rµ

µ

Gµν = Rµν −

1

2
gµνR

c = 2.998 × 108 ms−1

γ(v) = 1/
√

(1 − v2/c2)
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1. (i) Write down one principle of special relativity.

(ii) An observer O′ moves with speed v = 2.5 × 108 ms−1 with respect to
observer O along the positive x direction of O’s reference frame. The O′ observer
measures the length of a rod at rest with respect to themselves, laid in their x
direction, to be 10m. What length does the observer O measure the length of the
same rod?

(iii) The inertial frame S ′ moves with constant relative speed v in the positive
x direction of the inertial frame S. A particle moves with velocity u = (ux, uy, uz)
and acceleration a = (ax, ay, az) with respect to an observer in the inertial frame
S. The same particle moves with velocity u

′ = (u′

x, u
′

y, u
′

z) and acceleration
a
′ = (a′

x, a
′

y, a
′

z) with respect to an observer in the inertial frame S ′. Use the
Lorentz transformation between the S frame and S ′ to derive an expression for the
differential dt′ in terms of dt, dx and γ(v). Hence, given the following expressions
for the velocity u

′ of the particle in the S ′ frame in terms of the velocity of the
particle in the S frame

u′

x =
ux − v

1 −
uxv
c2

, u′

y =
uy

γ(v)(1 −
uxv
c2

)
, u′

z =
uz

γ(v)(1 −
uxv
c2

)
,

derive expressions for the components a′

x and a′

y of the acceleration of the particle
a
′ in the S ′ frame in terms of the components ax and ay of the acceleration a of

the particle in the S frame.

(iv) In the frame S, two particle are sent out from the spatial origin at time
t = 0 with speed v in different directions. The first particle moves in the positive
x direction of the S frame. The second particle moves in the positive y direction
of the S frame. Show that the magnitude of the velocity of one particle relative
to the other is

v

(

2 −

v2

c2

)1/2

.

[20 marks]
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2. Define the momentarily co-moving reference frame (MCRF).
A particle moves from rest at the origin of a frame S along the x-axis with

constant acceleration α as measured in its MCRF. Given that the transformation
of the acceleration in the x direction between the S inertial frame and the S ′

inertial frame (moving with velocity v in the positive x direction relative to the
S frame) is

a′

x =
ax

γ3(v)(1 −
vxv
c2

)3
,

show that the velocity after time t is

vγ(v) = αt ,

where α is the proper acceleration. If the motion is in the positive x-direction,
then show that

x =
c2

α





(

1 +
α2t2

c2

)1/2

− 1



 .

Plot the world line of the particle on a space-time diagram for positive x and t.
Compute the velocity of the particle that has infinite proper acceleration.

[20 marks]

3. (a) Write down the relation between the 4-momentum of a particle and its
4-velocity and rest mass. A particle of rest mass m1 and speed v1 hits a second
particle, with rest mass m2, that is at rest. The first particle is absorbed by the
second particle. Find the rest mass of the new particle in the frame where the
second particle was initially at rest.

(b) A photon with wavelength λ, momentum h
λ

and energy hc
λ

collides with a
stationary electron of rest mass m. The photon is scattered at an angle θ from its
original direction, with energy hc

λ′
. Write down all the 4-momentum vectors for

this process in terms of the energy and 3-momentum. Write down the equations
for the conservation of energy and momentum using 4-vectors for this process.
Hence show that

λ′
− λ =

2h

mc
sin2 θ

2
.

[20 marks]
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4. For the line element

ds2 =
dx2

y2
+

dy2

y2
,

of a two dimensional surface with coordinates x1 = x and x2 = y, compute all
the Christoffel symbols.

Write down the general equation for a geodesic in terms of coordinates xµ.
Hence show that

x
′′

−

2

y
x

′

y
′

= 0 ,

y
′′

+
1

y
[(x

′

)2
− (y

′

)2] = 0 ,

where x
′

= dx
dτ

and y
′

= dy
dτ

.
Define the covariant derivative of the 4-vector pµ in terms of its ordinary

derivative and the Christoffel symbols. Use the geodesic equation

pαpβ;α = 0 ,

for 4-momentum to show that

m
dpβ

dτ
=

1

2
gνα,βp

αpν ,

for a particle of mass m. What consequence does the above equation have for a
particle moving in a given metric?

[20 marks]
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5. The line element for a two dimensional surface is

ds2 = dv2
− v2dw2 ,

with coordinates xµ = (v, w). Write down the components of the metric tensor
and its inverse. Show that the only non-zero components of the Christoffel symbol
are

Γv
ww = v , Γw

wv =
1

v
.

Compute
Rw

vwv .

How many independent components are there of the Riemann curvature tensor
in two dimensions? What does the value of Rw

vwv imply about the geometry of
the surface?

Find a coordinate transformation between the coordinates v, w to the coordi-
nates x, t with line element

ds2 = dx2
− dt2 .

[20 marks]
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6. The metric for a Schwarzschild spacetime is given by

ds2 =
(

1 −

2M

r

)

dt2 −

(

1 −

2M

r

)−1

dr2
− r2dθ2

− r2 sin2 θ dφ2 ,

where c = 1 and M is constant in the coordinate system xµ = (t, r, θ, φ).
Consider a particle of rest mass m moving in the equatorial plane θ = π/2 of

this spacetime. Assuming pt = mẼ and pφ = − mL̃ find all the components of
pµ. Use pµpµ = m2 to derive the effective potential Ṽ 2(r) of the radial motion in
the equation

(

dr

dτ

)2

= Ẽ2
− Ṽ 2(r) .

Write down the condition on Ṽ 2(r) for a stable circular orbit. Hence show
that the radius of a stable circular orbit R is:

R =
L̃2

2M



1 +

√

1 −

12M2

L̃2



 .

(You may assume that the circular orbit with the largest radius is stable.)
Show that the square of the energy of the particle in the stable orbit is

Ẽ2 =
(

1 −

2M

R

)2

/
(

1 −

3M

R

)

.

Hence show that
dt

dφ
=

dt

dτ
/
dφ

dτ
=

(

R3

M

)1/2

,

and derive the period of the particle in the stable circular orbit.
[20 marks]
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7. The line element for a Schwarzschild spacetime is given by

ds2 =
(

1 −

2M

r

)

dt2 −

(

1 −

2M

r

)−1

dr2
− r2dθ2

− r2 sin2 θ dφ2

where c = 1. A massive particle moving in this spacetime obeys the following
equation

(

dr

dτ

)2

= Ẽ2
− Ṽ 2(r) ,

Ṽ 2(r) =
(

1 −

2M

r

)

(

1 +
L̃2

r2

)

,

where Ẽ = pt

m
and L̃ = −

pφ

m
are defined in terms of the 4-momentum pµ of the

particle.
Consider a massive particle which falls radially from a distance R to the

Schwarzschild radius at 2M . Show that the relation between the infinitesimal
proper time dτ and dr is

dτ = −

dr

(Ẽ2
− 1 + 2M

r
)

1

2

.

When Ẽ = 1 show that the proper time for the particle to fall from radius R to
the Schwarzschild radius at 2M is

τ =
4M

3

[

(

R

2M

)3/2

− 1

]

.

Derive the following relation between the infinitesimal proper and coordinate
time for arbitrary Ẽ

dt =
Ẽ

(1 −
2M
r

)
dτ .

The radial displacement from the Schwarzschild radius is defined to be ε = r−2M .
Using Ẽ = 1, show that

dt = −

(ε + 2M)3/2dε

(2M)1/2ε
.

Comment on the finiteness of the proper time of the particle to fall from radius
R to the Schwarzschild radius 2M . Explain why an observer using time t will
never see the particle pass over the Schwarzschild radius.

[20 marks]
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