2MA66 Summer 1999

Instructions to candidates.

Full marks can be obtained for complete answers to FIVE questions. Only
the best FIVE answers will be counted.

The following results may be used freely as required
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1. State clearly one of Einstein’s principles of special relativity.

An observer A is at rest in an inertial frame S whilst observer B moves
relative to S at constant velocity v in the positive x direction in an inertial
frame S’. S and S’ are synchronised at time ¢ = 0. At time ¢ = T in S, A sends
a light signal to B who receives it at ¢ = kT in S’ and immediately reflects it
back to A. Sketch these events on a spacetime diagram and show that

k(v) = V(c+v)/(c—v)

If additionally an observer C' moves in an inertial frame S” at constant
velocity u in the positive x direction relative to S’, where S” is also synchronised
with S at t = 0, deduce the relation between k(u), k(v) and k(w) where w is
the speed of S” relative to S. Find w in terms of u and v.

A particle P at rest at the origin is approached along the z-axis from
x = — oo by a particle L travelling at constant speed 2¢/5. At time ¢t = 0 P
emits two particles Q and R. Particle Q travels in the positive z-direction from
P at constant speed 4c¢/5 whilst R travels in the opposite direction at speed
3¢/5. Determine the velocities of @ and R as observed by L.

2. Define the momentarily comoving reference frame, (MCRF). Give brief
reasons why the definition of uniform acceleration in special relativity is based
on the MCRF.

A rocket is located at the origin O of an inertial frame S and undergoes from
rest a uniform proper acceleration of a in the positive z-direction. Determine
its velocity as a function of ¢ and the equation of the rocket’s worldline in S.

At blast-off an observer at x = 2¢?/a in S sends a light signal towards
the rocket. Sketch both events on the same spacetime diagram. Show that
according to the observer the light reaches the rocket at ¢ = 4¢/(3a). What
time does the clock on the rocket read when the light signal arrives?

[You may quote the formula d(uvy(u))/dt for the proper acceleration.]

3. (a) A particle of mass M decays into three identical particles of mass
m in such a way that the magnitudes of their momenta are equal. Using the
laws of conservation of energy and momentum, compute the speed of one of the
remnant particles. Clearly state with reasoning a condition on the masses M
and m for the process to be possible.

(b) A particle of rest mass m and kinetic energy 3mc? collides with a

particle of rest mass 2m which is at rest. The two particles coalesce to form one
particle of rest mass M. Compute M in terms of m and show that its resulting

speed is ¢4/5/12.



4. Consider a Cartesian coordinate system x* = (x,y) and a plane polar
coordinate system x* = (r,#) which are related by

xr = rcosb y = rsinf

where the transformation matrix A = (A“L) is given by
AN cos sin 6
(A ") (—%sinﬁ L cost
Compute the matrix (A“M,).
Let V# and T*, be respectively rank 1 and 2 tensors. Write down the

transformation rule for each tensor between coordinate systems x* and 2 and
the definition of their covariant derivatives with respect to x?.

Let ) )
v ()

and show that
V' o= r3cos20 , VY = r2sin26 .
If the only non-zero Christoffel symbols for plane polar coordinates are
1
r % 6
eez—r,FeT:FG:;

show that
Vig = — 3r3sin20 and Vi, = — 6r2sin26 .

Without further calculation state with reasons the value of VT;rg.

5. Demonstrate, using clearly stated symmetry properties, that for two di-
mensional surfaces the Riemann tensor, R, »,, possesses only one independent
component.

The line element of a two dimensional surface with coordinates z* = (6, ¢)
is given by
ds? = d6? + sec?0de? .

Write down the metric tensor and its inverse. Show that I‘Z 6= sec2 ftand
and F$¢ = tanf and compute the remaining components of the Christoffel
symbol, I'Y .
Show that
R0¢9¢ = — (2sec?® — 1)sec* 6 .

Hence deduce the value of Rd’e 50" With these expressions, compute R,, and R
and show that the Einstein tensor vanishes.



6. A particle of mass m moves along a geodesic of a spacetime with metric
guv none of whose components depend on a particular coordinate x®. Show
that the corresponding component of momentum, namely p,, is constant on
each geodesic.

If the particle moves freely in the equatorial plane, § = /2, of the Schwarz-
schild spacetime, whose line element is

2M oM\

(ds)? = (1 - —> A(dt)? — <1 - —) (dr)? — r2(df)* — r?sin® 6 (de)?
r r

where M is constant, deduce that pg and pg are constant.

If poc = mE ,Po = 0and py = — me, show that dr/dr satisfies an equation

of the form )
? dry™ E? — &AW(r)
dr

and deduce W (r), where 7 is the proper time.

For L? > 12M?¢?, sketch all possible forms of W (r) in the region r > 2M,
and discuss the nature of all types of particle trajectories. For what range of L
are hyperbolic orbits possible?

7. Consider a photon moving in the equatorial plane of the Schwarzschild
spacetime. The trajectory is governed by

ar\*> -, L2 2M de L
() -7 -%=(0-7) = (5)-=

where M is the mass of the gravitational source, ¢ = 1 and A parametrises the
worldline of the photon. Compute d¢/dr in terms of r, M and b = L/E. What
is the physical interpretation of b7

For an incoming photon with L > 0 and d¢/dr < 0, show that
d 1 -1/
d—z = (b—2—u2(1—2Mu)>

where 7 = 1/u. Solve the equation in the case when M = 0 and describe the
geometry of the trajectory.

For M # 0, show that

dé 1\
—/ = (14+2M — —
i (1+2My) (62 y )

where y = u(1 — Mu) and terms of order y* and higher are neglected in this
substitution. If initially ¢ = ¢ at r = oo, show that

oM 1 12
¢) = ¢O + Sin_l(by) + T — 2M (b_2_ 2>

What is the angle of deflection at the point of closest approach?



