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MATH325

THE UNIVERSITY
of LIVERPOOL

JANUARY 2003 ANSWERS

QUANTUM MECHANICS

TIME ALLOWED : Two Hours and a Half

These are brief answers, just to allow you to check your own results. You
should show much more working, and write more explanation, than you see
here!
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1 (i) Determine which, if any, of the following operators could represent
an observable in quantum mechanics

N d A d 1
A=z% Bz i
T i(z— + 2)

stating clearly any assumptions you make.
(ii) A particle at some moment in time is described by the wave function

b(z) =

cla®>—z2%) : |z|<a
0 : otherwise,

where ¢ and a are real positive constants. Find the normalisation constant c
in terms of a.

Find the expectation values (£) and (£?) with respect to the given wave
function.

Deduce that the uncertainty Az in a measurement of the position of the

particle is given by Ax = vk
(i) Integrating by parts

(Ap|g) = —(y|@) — (W|Ag) # (v|Ag)

so A is not Hermitian, so it could not represent an observable.
For the other operator, integrating by parts gives

(BY|g) = (v Bg)
so B is Hermitian, and it can represent an observable.

(ii) For correct normalisation

a 15
2/ 2 212

e dr =1 =22

/_ac(a z°)* dx = c 605

The expectation values needed are

() = ¢ /a z(a® —2*)?dr =0 (odd integrand)

—a
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(i) A particle of mass m is confined to the region 0 < x < L of the z-axis.

Write down the corresponding time-independent Schrodinger equation for the

problem and hence find the normalised eigenfunctions of the Hamiltonian
Show that the energy eigenvalues are

h2rn?

n:

At a particular moment, the particle is in a state described by the nor-
malised wave function

—Azx
Y(z) =1 Az — L)

0

IA IN

SEVISE=]
ol

<z
<x
<0 or z>1L

where A is a real, positive normalisation constant
(1) Determine the normalisation constant A

(11i) Calculate the probability, expressed as a percentage, that a measure-
ment of the energy will give the result E;

The Schrodinger equation is

n’ d*¢(z) . - B
~ 5 g = Poz)  with $(0) = ¢(L) =0.

The solutions (standard bookwork) are

2
On(z) = \/;sin? 0<z<L

2
hm2n?
E, = ————

(i) To normalise

/()L|¢(m)|2dm:1 ooA= 22

(ii) The overlap integral is

L/2
c1 / o1 (z —A\/7/ xs1n—dx+A\/7/L/2x— smf dz

The probability of getting result E; is

96
P(E)) = |e1]* = == 98.6% .
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3. A beam of identical particles of mass m and energy E > 0 is travelling
along the x-axis from x < 0 and is incident on a potential step

Vi) = Vo x>0
Viz) = 0 z<0

where Vjy is a constant. Suppose that 0 < E < Vj.

(i) Write down an expression for the current density j; for a beam of par-
ticles with wave-function 1 (z) = Ae™*®. For the potential step above, evaluate
the reflection coefficient R, defined as the ratio of the reflected current density
to the incident current density.

(ii) Deduce the transmission coefficient T, and comment on the result.

(11i) Calculate the relative probability of finding a particle at position x
(> 0) compared with that of finding one at the origin (x = 0). Comment on
the physical significance of this result.

(iv) Consider, instead, the case E > Vj. Describe, without further calcu-
lation, in what respect you would expect the nature of the solution to differ
from that which you have already provided.

(i) The current density is j; = 2| A
To solve the Schrodinger equation we make

Yr(z) = Ae*® 4 Be e z <0
Yr(r) = Ce ¥ x>0
21.2 2K2
with Wk =F, f =V, —FE.
2m 2m
Matching ¢ and % at x = 0 gives
k+1K k—iK
A = B == .
¢ 2k ¢ 2k
jr _|BJ?
so R=== ‘— =1
J1 A

(iil) R+ T = 1so T = 0. Even though 1 penetrates into the classically
forbidden region x > 0, the flux there is zero.
(iii) The relative probability is

[Yrr(z) |2 _ 2Kz

IO

There is barrier penetration, but it drops exponentially with distance into
the forbidden region.

(iv) If E > V} we find oscillating wave solutions in both regions. Now we
can have some transmission, expect 0 < 7' < 1.
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4. The Hamiltonian for a particle of mass m moving on the x-axis in a
harmonic oscillator potential can be written in the form H = (a'a + %)hw
where the frequency w is a positive constant, and where [a,a’] = 1. The
position x and momentum p are given by

h
! (a—a') and p:—a(a+aT), where o = | =

V2 V2 h

(i) Show by induction that [a, (a')"] = n(a')"~1, for n a positive integer.
(ii) The normalised eigenfunctions of the Hamiltonian are given by

1
where apg = 0. Show that a, = /N, 1 and ath, = vn + 19, 41.

(iii) By writing x1,, pY, in terms of ¥y 1, Yni1, compute the uncertainties
Ax and Ap for the state ,.

(iv) Find AzAp for the state ¢, and comment on the result. [You may find
the following identity useful:

[A, BC] = B[A,C| + [A, B]|C for operators A, B and C.]

Tr =

(aT)n¢0a n Z 07

(i) Prove [a, (a")"] =n(ah)™ ! (%)
The hypothesis (*) is true for n = 1, ([a, aT] = 1). Using the identity in the
hint,
[a, (a")*a'] = (a')*[a, a'] + [a, (a')*]a’
Now suppose that (*) holds for n = k, the above becomes
[a, (a")**'] = (a")* + k(a®)* = (k + 1)(ah)F,

i.e. (*) also holds for £+ 1. The hypothesis (*) holds for n = 1, if it holds for
any n it also holds for n + 1, so by induction it holds for all positive integers.

(@) aby = (e = = {(@)a+n(@)" "} o = VA s
a.td)n = L(a.i-)TH_ld)O =vn+1 ¢n+1

Vn!
(i) i, = af/i(\/ﬁ Yoot — VAT T Yus)
plbn = %(\/ﬁ ,an—l + V1 + 1 ¢n+1)

= (Yn|ztpn) = 0; (Yn|ptn) = 0;
(@alotn) = 55 (n+ (0 -+ 1)

2 2

Palpn) = "0+ (n 4 1),

= Amzé\/n—i-%; Ap:ham

(iv) AzAp = (n + )h. This is > 3h, as required by Heisenberg’s un-
certainty principle. When n = 0 the uncertainty is exactly the minimumum
value allowed.
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5. Given that the angular momentum operators L; (i = 1,2,3) satisfy the
commutation relations [Lq, La] = ithLs (and cyclic permutations), show that

[L?, L] = [L? Ly) = [L?, L3] = 0

where L2 = L2 + L2 + L% .

From the above commutation relations it is possible to deduce the following
results (which you may assume). There exist normalised eigenstates |l, m)
such that

Ls|l,m) = hm]|l,m), L%|l,m) = R + 1)|l,m),

where 2l is a positive integer and the possible values of m are —I, —l+1,...1—
1,1. Moreover,

Li|lym) = My,|l,m+1) and L_|l;m) = Ny ,|l,m—1),

where Ly = Li+1iLy and L_ = L1 —1Ly, and M, ,, and N, are real, positive
constants.
(i) Show that
L L,=17-L}-hls

and, by considering the norm of L, |l,m), show that

My = T/l(L+1) — m(m + 1).

(i1)A particle is in a state such that I = 1. Write down the allowed
values of m (corresponding to the eigenvalues of Ls) and evaluate the matriz
elements

(1,0|L4|1,0) and (1,1|L4|1,0).

(iii) Find all other non-zero elements of the matriz
<1a m,|L+|1a m> :

and display your results for the full 3 x 3 matriz where the rows are labelled
by values of m' and the columns by values of m.

(iv) Obtain a similar matriz representation for L_, and hence find a ma-
trix representation for L.

[You may assume that in (i), Ny, is given by

Nigm = 1y/I(1 + 1) — m(m — 1) |
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The mod-squared of L |l,m) is

(G, m|LLL |l m) = (I, m|L_Li|l,m) = (I,m|(L?— L} - hLs) |I,m)
= R*{I(l+1)—m(m+1)}

= Mym = B/I( +1) — m(m + 1)
(ii) The allowed values of m run from —I to +/ in steps of 1, som € {—1,0,1}.
(1,0|L4+]1,0) = Mjp(1,0/1,1) =0. (orthogonality)
(1,1]L4]1,0) = Mio(1,1|1,1) = Av2

(iii) The scalar product is 0 unless m = m + 1. The only other non-zero
element is

(1,0[L4|1,—1) = My, 1(1,0[1,0) = hv2.

The matrix form of L, for [ =1 is

0 1 0 m' =1
L= h/2 |0 0 1 m' =
0 0 0 m = —1

m= 1 0 -1
(iv) Similarly L_ in matrix form gives
0 0 O
L =m/2|1 0 0
0 1 0

(Either use L = Ll, or the N, ,, values from the hint.)
From the definitions, L = (L4 + L_), so

01
h
L1:— 1 0

ﬁ( 1

S = O

(note that Ly is Hermitian, as it should be).
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6(i) Using integration by parts, or otherwise, show that for n > 2
n—1
232

Given that Iy = ‘2/—677 , find Iy. Fvaluate I, and deduce the value of Is.

(ii) The Hamiltonian for a particle of mass m moving in three dimensions
under the influence of a three-dimensional harmonic oscillator potential is

o0 2
I, = I, 5, where I, = / rrte P
0

. h? 1
H = —%Vz + émw%z :

where r = |r| = /22 + y? + 2% and the radial part of the Laplacian operator
18

» _ 0% 20
rad 7 gp2 Ty gy

Given that the normalised ground state wave function is

\Y

where A is real, determine 8 and the ground state energy Ey. Calculate also
the normalisation constant A.

(iii) The potential is perturbed by the addition of a term ArS where X is
small. Use first order perturbation theory to obtain an approximation to the
perturbed ground state energy in the form FEq + AK where K is a constant
which you should find.

[Standard results from perturbation theory may be assumed without proof.]
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(i) Proof:

-1
I, o= /oo " 2e B dp = l r 652"2]
0

o0

n—1 n—1"

0o pn—1 2 2
. —/ r—(—2527')e’ﬂ2r2 dr = b I
n— 0

0

To find I;, make the substitution 7? = u

_ —pB2r2 _ - —B2%u _ —B%u _
I1—/O re dr—2/0 e du = —252 [e ]0 =35

From I and I; we can deduce

1 JT 4 4 2 1
2 232 0 483 5 232 3 232 232 1 36
(ii) Plug 1 into the Schrédinger equation H o = FEpiby. Since 1) is
independent of #, ¢ only V2 is needed.
2 h2 " 2 / 1 2,2
Hipo(r) = — %( o+ ;1/10) +gmwr Yo

B’ 4,2 2 1 2,2 —1p2r2
= <_%(ﬁr —3ﬁ)—|—§mwr Ae 2

1y is a solution of the Schrodinger equation if the r? terms cancel, i.e. if

) mw
5_h

In that case vy is an eigenfunction of H with eigenvalue

h? 3
E,= —38% = “hw.
0 2m3ﬂ Zh(}.)

For correct normalisation

() 3/4
[T P dr=1 = A= (@)
0 hm

(iii) Perturbation theory says that to first order the energy change is

AEy = (0| Ar®iho) = /0 T 4 ArS (o (r)|? dr = dm APToN

Finding I from part (i) we get

3 5/2
E:§hw+K)\ with K = :—<—) .
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7.(1) Give a statement of the variational principle and explain briefly how
it may be used to obtain an upper bound on the ground state energy Eqy of a
system with Hamiltonian H.
(ii) The motion of a particle of mass m in one dimension is described by
the Hamiltonian
5 R 2
H:—%@-I—)\m (A>0).

Consider, in turn, each of the following two normalised wave functions

wl(x) = A1€—alml and ¢2($) = A2(1 + a|x|)e—a|m| ,

/2
Alz\/a, AQZ 304

By applying the variational method, decide which (if any) of these is a suit-
able trial wave function for the given problem. Where appropriate, give a
variational upper bound for the ground state energy.

Note: in (ii) you may use without proof the result

Here, a > 0 and

n!
bn+1

I,(b) E/ z"e % dr =
0
when b > 0.
(i) The variational principle proves that for any normalised state v

(Y| Hy) > Ey.

Choose a trial wave function @ with some free parameters, and minimise
(|Hy) w.rt. the parameters. This minimum value of (H) is an upper
bound on the ground state energy, which is usually close to the true Ej.

(ii) (a) For the first wave function we get

1 oo h2 2
T) = %[m[ﬁdjl]*[ﬁ%] dr == 2;
< A
(V) = )\/_oo|¢1|2|;c|dx:...:%
N R2a? A
=) = 2:1 " 3

The minimum value is

. 2 5 2)2\ 3 5
(H) = 31 (m)\) = 0.945 (h A ) when o« = (m)\) .

2m \ 21 m 2h?

(b) Similarly the second wave function gives

K2a? 9\

fy= et 9
<> 10m+100¢
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which has a minimum value of

2 1

. 3 K2 (9mA\\?® AR 9m\ 3

(Hy==-"(222) —0818( =) when a=[—n) .
10m \ 2k m 2h

o=

Both functions are suitable. The second gives a lower answer, so it must
be a better estimate.

Notes:

First a physics note, then a warning about a mistake that’s easy to make.

(a) The equation can be solved with the help of a special function, the
Airy function. The true ground state energy is

212\ 3
E, = 0.8086 (ﬂ> ,
m

so the bound from 1), is just 1% over.

(b)

/\ q//:AeiaM
/ +Age M x<0
Y= % —alx]
/ —Aae x>0
w“:A[a2€7W‘—2o«5(x)}]

Calculating the kinetic energy from (p?) = (p1)1|p);) is straight-forward,
but if you calculate it from (p?) = (v1|p®1)1), (which should always give the
same answer) it is easy to make a mistake. The first derivative of ¥; makes
a jump at & = 0, so the second derivative has a d-function at z = 0. It’s easy
to forget the J-function and get a silly answer (that (p?) is negative). The
easiest way of avoiding this problem is to always calculate (p?) by the first
method ((py1|p)1)), which avoids taking second derivatives. If you do want
to calculate it from the second derivative, remember that wave-functions with
sudden changes in slope will give you § functions in 1)".
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