PAPER CODE NO.
MATH325

THE UNIVERSITY
of LIVERPOOL

JANUARY 2001 ANSWERS

QUANTUM MECHANICS

TIME ALLOWED : Two Hours and a Half

These are brief answers, just to allow you to check your own results. You should show
much more working, and write more explanation, than you see here!

In this paper, bold-face quantities such as r represent three-dimensional vectors.
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1. The normalised eigenfunctions of the Hamiltonian of a particle of mass m confined
to the region of the x-axis between r =0 and r = L are

L
0 : z<0 or z>1L

Asin™® . 0<z<L
¢n(x):{ 0

where A is a real, positive normalisation constant and the corresponding energy eigenval-
ues are P22
"= T3 (n=1,2,3...).

Find the value of A.

The particle is initially in the ground state of this potential well of width L. Suddenly
the well expands to twice its original size, the right wall moving from x = L to x = 2L,
leaving the wavefunction momentarily undisturbed. A measurement of the energy is now
made.

(a) Write down the wavefunction ¢ of the particle in the modified potential (indicating
its value for all z).

(b) By expressing 1 in terms of eigenfunctions of the modified system, find the proba-
bilities for each possible result of the energy measurement. What is the most likely result?

(c) By using the result that

1 2
n=1,3,5... (n?—4)* 64’

verify that the probabilities evaluated in (b) do indeed add to 1.
(d) If the result of the energy measurement was in fact EY, where

h*n2n?
El = =1,2,3...
W gmrr (M= L3,
what is the probability that a subsequent energy measurement will give EY?

[For part (b), you may find it helpful to use the result: 2sin Asin B = cos(A — B) —
cos(A + B)).
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To find A, require

L L 2
[lon@?de=1 = |45 =1 = a=y/].
0 2 L

(a) Initial wave-function is the ground state (n = 1) of the box of length L,

b(x) = %sin% : 0<z<L
0 : z<0 or z>1L
(b) We get the eigenfunctions in the new box by changing L to 2L in the formula for ¢,.

VL 2L

, L gin®z . 0<z<2L
0 : z<0 or z>2L

Writing 9(z) = X, cn,,(z) we find the ¢, from the scalar product (or overlap integral)

2L \/_ 2L
= / = ,*x ln—Sl —d:L'—l— de
" o " L
Using the hint gives
44/2 sin o n9
(4 — n?)
Cn =
! 2
— n —
V2
The probabilities are
32
(2 — 4)2 n odd
P =leaf =1 1 b2
0 otherwise
The most likely result is that n = 2.
(c)
Z| 2 = 32 1 _1+327r2_
o 2 e 1,3,5... (n? —4)? 2 w264

(d) The probability is zero: the only possible outcome of subsequent measurements is Fj.

Reason: Immediately after a measurement that gives £} the wave-function is ¢ = ¢/.

If we evolve this in time we get
Y(z,t) = ¢l (z)e ™1t where hw; = Ei.

1 is proportional to ¢}, so measurements are 100% sure to give Fj , all other results are
impossible.

Paper Code MATH325 Page 3 of 17 CONTINUED/



2. A beam of particles of mass m and energy E is incident in the positive x direction
on a potential well whose potential V' is given by

0 : z<0 (region I)
Vig)={ =Vo : 0<z<a (region II)
0 : z>a (region III)

where E > 0 and V > 0.
(a) Show that the particle wave function in the x regions defined above can be written

wl — AeiKa: + Be—iKa:
Yin = Ce'?® + De "
Ym = F ke
where you should find expressions for K and q.

(b) State the conditions on the particle wave function v and its derivative 1)’ which
must be satisfied at the boundaries between regions I, IT and III and use these to show that

F 4Kq

A (K + q)26i(K—q)a . (K . q)2€i(K+q)a

(c) The incident particle current density for the above scattering problem is defined by

jr="Eap.
m
Give the corresponding expressions for the reflected and transmitted particle current den-
sities jr and jr. Hence define the reflection and transmission coefficients R and T

(d) Use the result of part (b) to evaluate the transmission coefficient T in the case
when qa = nmw (where n is some integer). Without explicitly evaluating it, state what the
value of R will be, giving reasons.
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2.(a) The Hamiltonian is

and its eigenvalue equation is H Y = E.
In region I or region III the potential is 0 and the Schrodinger equation is

n o?
T om 922 (z) = EY(x)

which has the solutions

. 2mE
Y(z) = eF5®  where K? = 7;_:2 if £>0.

In region I both solutions will be present, so we write
Yr(z) = Ae'K® 4 Be K"

which is the general solution of the Schrédinger equation. In region III there will be no
e *K? term present because there is no source of incoming particles from large = (we are
told in the question that the incoming beam is travelling in the positive z direction).

wlll(w) = FeiKz.

In region II the potential is —Vj and the Schrodinger equation is

h2 82 h2 82
(- g~ ) PO = Bula) =~ 2 v(e) = (B + Vol
which has the solutions
Y(z) = e**  where ¢> = w if E+Vp>0.

The general solution in region II is
’QbH ($) = C’eiq”” + De—iqw.

(b) Both % and ¢’ must be continuous at z = 0 and = = a.
There are only 3 unknowns at the x = a boundary, but 4 at z = 0, so it is probably
easiest to start at £ = a. There we have to solve the simultaneous equations

Yu(a) = ¢Ym(a) = Cel?% + De % — FeiKa
Yn(a) = Yim(a) = q(Ce'1™ — De™"1%) = K Fe'™®

which has the solutions

] K ]
Cezqa — 4q + FezKa
2q
. — K )
De ¢ = 1_— peika
2q
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The continuity equations at x = 0 read

¥1(0)
1(0)

Solving these equations for A gives

|

Yu(0) = A+B=C+D
Yu(0) = K(A-B)=q(C-D)

K 2 K—q)? .
sk = (K + )0+ (= K0 gocamp K =0F g

2q 2q
N A B (K+ q)2 eiK—q)a _ (K— q)2 ei(K+q)a
F 4Kq
as required.
()
. hK
Jr = —|B|2
m
. hK
Jr = —|F|2
m
R - dn_ 1B
g AP
oo dr _IFP
jr AP

(d) If ga = n7 the result from (b) becomes

é _ 6i(Ka—n7r) (K + q)2 — (K _ q)2 enr _ 6i(Ka—n7r)

F 4Kq

because "™ = 1. This gives
2

F
T=|—| =1.
i

If T'=1 we expect R = 0 by conservation of probability flux j.
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3.(i) The Hamiltonian of a particle undergoing simple harmonic motion in one dimen-

ston s given by

2 p 1, 242

H=—+ _—mwz

2m ta
and ¢g is the normalised ground state wave function such that agg = 0 where
a , 1 mw
o = —

ﬁ(mp_zx), A

a =

(a) Given that [%,p| = ih, show that [a,a’] = 1.
(b) Show that one may write the Hamiltonian in the form

H = hw(ata+ 1)

and hence find the eigenvalue corresponding to the groundstate wave function ¢q.

(c) Show that ¢1 = Aa'¢gy is also an eigenfunction of H and find the associated
eigenvalue. [Here, A is a normalisation constant.]

(d) Given that the properly normalised ground state wave function is

a 1
¢o = ”ﬁe QQ%Z,

obtain the properly normalised eigenfunction ¢1(z).
(ii) Establish, giving reasons, which of the following operators could represent quantum
mechanical observables:

C 11\ 5 (0 i L d . d
A‘(l 0)’ B‘(—z‘ 2)’ C=ay, D=ileg +3)

where the space of wave functions ¥ (x) acted upon by C and D is such that a < z < b
and ¥ (a) = (b) = 0.
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3.(1)
1
a:i(—ﬁ—zﬁ) = daf =

V2 mw V2 mw P = \/ﬁ(mw

because p and & are both Hermitian.

9 A\ 2 . . L\ 2 . .
(6%
la,a'] = aa’ —ala = ?{(p> +iz‘:@—mi+:ﬁ2—(i) —z‘a}ﬁJrﬁz':E—f;?}
m

1
2

i o b i p %+ i3 p + 42 P’ +i[jaﬁ] +mUJA2 H
a'a = — — ) ——rtiT— 4+ = P2 =" _
2 mw mw mw 2mhw 2h 2h hw

=H = hw(a'a+3).

Hoy = hwalady + %hwcﬁo =0+ %hwgbo
so the eigenvalue is Ey = 1 hw.
(c)

HAd ¢y = Ahw(alaa’ + 1a%)¢o = Ahwa' (aal + 1)po = Ahwa' (a'a + )¢y = 3hwAa’ ¢y

so ¢1 = Aa'dg is an eigenfunction of H with eigenvalue F; = %hw.
(d) First find A

(p1l1) = | AP (dolaatdo) = |A]*(¢ol(aa + 1)o) = |A[ (oldo) = |A| = 1.

— T :& _ii 1 — g 4;“6 : —%azwz
91 =a'gp \/5< zmwdm+zx>¢o z( - xe .

3.(ii) The matrices A and B are both Hermitian, so they could represent observables.

Integrating by parts

(Co|g) = —(]8) — (¥|Co) # (¥|C)

so C is not Hermitian, so it could not represent an observable.

For D, integrating by parts gives (Dv|¢) = (1)|D¢) so D is Hermitian, and it can
represent an observable.
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4. Given that the angular momentum operators L; (i = 1,2,3) satisfy the commutation
relations [L1, Ly] = thLz (and cyclic permutations), show that

[L? L] = [L? Lo] = [L? Ls] = 0,

where L2 = L? + L2 + L2.
From the above commutation relations it is possible to deduce the following results
(which you may assume). There ezxist normalised eigenfunctions |l,m) such that

Ls|l,m) = hm|l,m), L2, m) = B2 + 1)|I,m),

where 21 is a positive integer and the possible values of m are —I,—l + 1,...1 — 1,1.
Moreover,

Li|l,m) =M u,|l,m+1) and L_|l,m) = Nymll,m—1),

where Ly = Ly +1iLy and L_ = Ly —iLy, and M, ,, and N, ., are real, positive constants.
(a) Show that
L L, =L*-L}—hL3

and, by considering the norm of L. |l,m), show that

Mim = /Il + 1) —m(m + 1)
(b) A particle is in the normalised angular momentum state
) = A(]1, =1) +[1,1) = 2[1,0))

where A is a real normalisation constant which you should find. By expressing Ly in terms
of Ly and L_, find the expectation values (L,) and (L?) for this state. Hence find the

standard deviation AL, for this state. ((AA)? = (A — (A))?) .)
[You may assume that

Nign =/l +1)—m(m—1) and L L_=L%—L2+hLy]
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4. Doing this case by case:
L%, Li] = [L}, L] + [L3, Ln] + [L§, Ln] = 0+ [L3, L] + [L3, Lu].

There are many ways to check that this is zero, here is one (don’t worry if your method
was a bit different).
Look first at the [L2, L;] term, and “push” the L; operator through to the back:

(L3, L1] = L3y — LyL

L3Ly — LyLiLy — [Ly, Lo] Ly

LiL, — L3Ly — Lo[Ly, Lo] — [L1, Lo] Ly
= —’LthLg - ’LhL3L2

Similarly

[L3,L] =--- = +ihL3Ly + ihLyLs
= [L3, L] +[L3, L] =0
= [L? L] =0.

Repeat for [L?, Ly] and [L?, L3] (or say that they are clearly also 0 by symmetry).
The quickest method, if you are confident with the €;;, symbol, is to do everything in
one go by considering [LZ, L;].

(a) L_Ly = (L1 —iLy)(Ly +iLy) = L?+ilLy—iLyLy + L2
= L+ L3+i[Ly, Ly]
= L>—L}-hls

The norm of L. |l,m) is (I, m|LY L, |l,m) = (I, m|L_L,|l,m).
(Lm|L_Ly|l,m) = (I,m|(L? = L — hLs)[l,m) = K> {I(l+ 1) = m* = m} .
Because L, |l,m) can also be written M ,,|l,m + 1),

MZ, =R {l(l+1)—m(m+1)}.

(b) (gl = AP (1P + 17+ (-2?) = A:%.

From the definitions of L} and L_ we find Ly = (L + L_).

LM): 3(Ls + L)v)
= §(L+|1, —1) + Ly|1,1) = 20, [1,0) + L_[1, 1) + L_|1,1) — 2L_|1,0))

A
- 5(ML,I|1, 0) + My1[1,2) — 2My 0|1, 1) + Ny_1|1,—2) + Ny1|1,0) — 2Ny,o[1,-1))

A
= Eh\/ﬁ(|1,o> +0=2[1,1) +0+]1,0) — 2|1, -1))

_ jg(_|1,—1>+|1,0>—|1a1>)
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We can now work out the expectation values,

<L1> = <¢|L1|¢>

= %% (€1, =1 = 21,00 + (1,1]) - (= [1,=1) +[1,0) — |1, 1))
V8
= —h-o

(L) = WILiLafy)

= %(—<1,—1|+<1,0|—<1,1|)~(—|1,—1)+|1,0>—|1,1))
= B
2 2_h
ALy = (LF) — (L) ~ 3
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5. The Hamiltonian for a stationary electron of mass m and charge e in a constant
magnetic field B along the z-axis is given by

A

H = hwos

where

_¢eB d _<1 0)
w= and o3=(, |-

(a) By solving Schrédinger’s equation, show that at time t the state of the electron is given
by

ae—iwt

»(t) = ,

beiwt
where a, b are constants.
(b) An observable O is represented by

A 2 1
027(1 2)

where vy is a real constant. Compute the eigenvalues and normalised eigenvectors of 0
and deduce the possible results of a measurement of O.
(c) At t =0, the electron is in the state

v = (1)

By writing 1(t) as a linear combination of the eigenvectors of O, find the probabilities of
each possible result of a measurement of O at time t.
What is the effect on the system of such a measurement?
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5.(a)
Write the wave-function as a two-component vector (t) = (31 Etg)
2

The Schrodinger equation is

oy _ L d (i) _ 10 (i(t)
g = o) = inge () =m (o 2 ) (o)
This splits into two independent equations

FSa(t) = +a(t) and i a(t) = )

The general solutions are ¥ (t) = ae™** and 15 (t) = be™!, where a and b are complex
constants. Therefore the general solution of Schrodinger’s equation is

aefzwt

P(t) = ,

beiwt

(b) Finding the eigenvalues of a 2 x 2 matrix should be easy by now, the results are

1 /1
A1 = 3y with eigenvector ¢ = — < )
V2 \1

1
and My =7 with eigenvector ¢o = ﬁ (_11)

The possible outcomes of a measurement are the operator’s eigenvalues, (37 or 7).

(c)Att=0
1 /4
0)= ( ) .
w(0) = = (§
SO a = z/\/§ and b = 1/\/§
. L 7 efiwt
v) = 75 ("t )
We want to express ¢(t) as a combination of eigenvectors of 0, Y(t) = c1¢1 + capa. The
coefficients are given by

1 - —iwt 1 . .
— _ — . te _ s iwt iwt
e = (al®) = ol v =51 D) (T ) =g (e o),
1 ie—iwt 1 . )
— — AT, — _ . Y R 17 AN 173 7
o = (Gl®) = vt =5 (1 - (T ) =5 (e - ).
The probability of getting result \; is |c;|?.

P(3y) = laf=cda=3 (—i et + e_i“’t> (z e 4 ei“’t) =

P(’Y) — |CQ|2 _ C;CQ _ i (—Z eiwt _ 6—iwt> (Z e—iwt _ eiwt) _

(1 4+ sin 2wt)
(1 — sin 2wt)

N= DN

After a measurement the wave-function “collapses” to the corresponding eigenvector (¢;
if the outcome is \;.)
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6(i) Use integration by parts to show that for n > 2

232 o
I, o= iIn, where I, = / e P dr
n—1 0

Given that

_ VT
=35
find I. Evaluate I; and deduce the value of Is.

Io

/6 marks/

(i) The Hamiltonian for a particle of mass m moving in three dimensions under the
influence of a three-dimensional harmonic oscillator potential is

. K2
H=——V>+1lmuwr?,
2m

where r = |r| = /22 + y? + 2% and the radial part of the Laplacian operator is

o2 0 20

wd = grz " o
(a) Given that the normalised ground state wave function is
*1527‘2
Po(r) = Ae 2

where A is real, determine 3 and the ground state energy Fjy.
(b) Calculate the normalisation constant A.
(c) The potential is perturbed by the addition of a term \Hy, where

3
Hy(r) = 7“3(%) *  and X is small.
Show that, to first order in X\, the perturbed ground state energy can be written in the form

ghw + AK

where K is a numerical constant which you should find.
[14 marks|

[Standard results from perturbation theory may be assumed without proof.|
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5.(1) Proof:
o0 2.2 n—1 2.2 o oo pn—l 2.2 2 2
Lia= [ 72 dr = [’" e? ] = [T (=28 dr ca
0 n—1 0 0

n—1 n—1"

To find I;, make the substitution 72 = u

_ —B2r2 _ - 2u _ —B%u —
Il_/o " dr_Z/o e tdu= 252[ ]0_252

From the recursion formula
1 2 1
_]Ozﬁ, L=, =
23270 48 232 254
(ii)(a) To find B and E, we plug the wave-function into Schrédinger’s equation.
H 7/1051?) = Eotho(r)

I3 1
= — —va%( r) + mw r*1ho(r) = Egbo(r)
2
Y P

I, =

1 - 2 9 _11327.2 o 7152,’”2
= 2m(87‘2 p —)Ae +2mere 2 = EyAe 2
= —3ﬁ2 LA h = Bir2e 2P 4 %mw2r26_%52’"2 = Ege 277"
2 h2 a2 1 o
= —3B ,B'r’ +2mwr_E0

Equating coefficients (to make this equation true for all r) gives

ﬁ4:mh;u = b= \/7

3R
= ——/3

(b) We now know 8 and Ey. To find A we impose
/ arr?lypolPdr=1 = 47r|A|2/ r2e P dr=1 = d4n|APL =1.
0 0

and

From the recursion relation
LT
28270 T 43
3 3 3
AP APl (@)
;33

(c) The oscillator is perturbed by adding a term

I, =

SO

mw
MH; = \r? ( . ) = 333,
We remember the first-order perturbation formula
En = En + (Y| \H1¢pn) + O(N?)
Applying this to the ground state

o B 4
(ol AH1to) = AB3|AJ? /O dr 4nre P03 = \G3| AlP4n I; = r
3 4

_ 4 2 _
=& = 5hw+)\\/7_r+0(>\) - K==
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7. An arbitrary, normalised wave function Y is expanded in terms of orthogonal,
normalised eigenfunctions ¢, of the Hamiltonian H :

A

Y= Z CnPn Ho¢, = E.¢n

and the eigenfunctions are ordered so that Eg < E; < Fs . . ..
Show that

Ey < (¢|H)

and use this result to explain the variational method for estimating an upper bound on the
ground state energy of a system with Hamiltonian H.

A particle of mass m moves on the x-azis subject to a potential V(x) = n|z|, where n
18 a positive constant.

1 2.2
(i) Normalise the trial wave function ¢(z) = Ae™ 27 ® | (i.e. find A) and show that
W8

am B

(Y| Hy) =

(ii) Hence use the variational method to show that the ground state energy is at most

2,2 1
B = ()

How might you improve on this estimate of the ground state energy and how would you
know if you had succeeded?

You may use the results:

/°° e P dy = g’ /°° 2?e P dy = ﬁ

— 00
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7. Write the wavefunction ¢ as a sum over the eigenfunctions of H,

Y= Z A Pn.-

If ¢ and ¢, are properly normalised Y, |a,|?> = 1. The expectation value of H is
(H) = (HY) = 3 |an*E,
= o) lanl + 3 |anl*(En — Eo)
= Ey+ ) |an (B, — Eo) > Eg

because (E, — Ey) > 0 and |a,|? > 0.
We can use this to get an upper estimate on Fy. Choose a trial wave function ¢ with
some free parameters, and minimise ()| H1) w.r.t. the parameters. This minimum value

of (H) is an upper bound on the ground state energy, which is usually close to the true
Ey.

(i) Find A:
o0 B | B
[l =1 = A=y
Find (H):
1 oo K’
(T) = %/_wdwlmbl ==
_ [ 2 _o5 [T .=
) = %jww) el =2 [ do pPne == 50
oy S/
= WIHY) = 5

(i) Minimise (¢|Hv) wrt §:

1
h? An*m?\ ©
R n_ _y o po(trm
2m  [%m
So the minimum expectation value is

R 2+2 % 242 %
(VIHY) min = 3 (n h ) — 0.812889 (77 h ) .

2\ 2m™m m

To get a better estimate one could try a trial function with more free parameters. If it
gives a lower number for the bound on E; we know that we have a better estimate.
Note: The true ground-state energy is

1
2h2 3
E, — 0.808617 (" )
m

so this estimate is just 5% off.
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