PAPER CODE NO. MATH323

JANUARY 2006 EXAMINATIONS

Bachelor of Arts : Year 3
Bachelor of Science : Year 2
Bachelor of Science : Year 3
Master of Mathematics : Year 3
Master of Mathematics : Year 4
Master of Physics : Year 3
Master of Science : Year 1

No qualification aimed for : Year 1

FURTHER METHODS OF APPLIED MATHEMATICS

TIME ALLOWED: Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

Full marks will be awarded for complete answers to five questions. Only the best five answers will be taken into account.

THE UNIVERSITY of LIVERPOOL

1. Using the method of variation of arbitrary constants, find the general solution of the ordinary (Euler-Cauchy) differential equation

$$4x^2 \frac{d^2y}{dx^2} - 8x \frac{dy}{dx} + 9y = 4x^{3/2} \ln x .$$

You may use, without proof, the result

$$\int \frac{\ln^n x}{x} dx = \frac{1}{(n+1)} \ln^{n+1} x + \text{constant } .$$

[20 marks]

2. Write down the differential equation satisfied by y(x) for which the functional

$$I[y] = \int_a^b F(x, y, y') dx$$
 with $y(a) = y_0, y(b) = y_1$

is stationary where y_0 and y_1 are constants.

Find the function y(x) which extremises the functional

$$I[y] = \int_{-1}^{1} [(y')^2 + y^2] dx$$

with y(1) = 2 and y(-1) = -2.

By denoting this explicit solution by y_{ext} show that

$$I[y_{\text{ext}}] = 8 \coth 1$$
.

Compare this result to the value of I obtained for a straight line joining the endpoints. What do you conclude about the nature of the extremum?

[20 marks]

THE UNIVERSITY of LIVERPOOL

3. Indicate briefly how you would find the function y(x) satisfying $y(a) = y_0$ and $y(b) = y_1$, such that the functional

$$I[y] = \int_a^b F(x, y, y') dx$$

is stationary subject to the condition that a second functional

$$J[y] = \int_a^b G(x, y, y') dx$$

is equal to a constant.

For the case

$$I[y] = \int_{1}^{2} \left[x^{4} (y')^{2} + 4x^{2}y^{2} \right] dx$$

and

$$J[y] = \int_{1}^{2} x^{4}y \ dx = 1$$

where y(1) = 1 and y(2) = 0, find the extremal curve. [You do not need to evaluate I[y] for the extremal curve.]

[20 marks]

4. The functions u(x,y) and v(x,y) satisfy the simultaneous partial differential equations

$$u_x - 2u_y + v_y = 0 -3u_x + v_x + 2v_y = 0.$$

Show that this system of differential equations is hyperbolic with characteristics which may be chosen as

$$x + y = \eta = \text{constant}$$

 $y - 4x = \nu = \text{constant}$

Hence show that the Riemann invariants of the system are

$$u - v = \text{constant}$$
 and $6u - v = \text{constant}$.

Find the solution for u(x,y) and v(x,y) in terms of x and y such that $u(x,0)=\frac{1}{6}x^3$ and v(x,0)=x.

[20 marks]

THE UNIVERSITY of LIVERPOOL

5. Show that for $x^2 \neq 2$, the partial differential equation satisfied by u(x,y),

$$(x^{2}-1)u_{xx} + x^{2}u_{xy} + u_{yy} - \frac{2x}{(x^{2}-2)}(u_{x}+u_{y}) = \frac{(x-y)(x^{2}-2)^{2}}{(x^{2}-1)}$$

is hyperbolic with characteristics

$$\eta = x - y = \text{constant}$$
 and $\nu = y - \frac{1}{2} \ln \left| \frac{(x-1)}{(x+1)} \right| = \text{constant}$.

Show that the canonical form of the partial differential equation is

$$u_{n\nu} = \eta$$
.

Find the general solution for u(x, y) when $x^2 \neq 2$.

[20 marks]

6. (a) Show that the most general solution of Laplace's equation

$$\Phi_{xx} + \Phi_{yy} = 0$$

which is independent of y is given by $\Phi = Px + Q$ where P and Q are constants.

Determine P and Q given that $\Phi = 1$ on x = 0 and $\Phi = -1$ on x = a where a is a constant.

[3 marks]

(b) The rectangle OABC in the z-plane has corners at O(0,0), A(a,0), B(a,b) and C(0,b) where a and b are constants and a>b. Show that the conformal map, where z=x+iy and w=u+iv,

$$w = \frac{1}{z}$$

maps the line AB into the arc of a circle of radius 1/(2a) with centre at (1/(2a), 0) beginning and ending at the points (1/a, 0) and $(\frac{a}{(a^2+b^2)}, -\frac{b}{(a^2+b^2)})$ in the w-plane.

Determine where the remaining edges of the rectangle are mapped to in the w-plane under w = 1/z. Sketch the boundaries of both regions and determine the region the interior of the rectangle is mapped to in the w-plane.

[13 marks]

(c) For the harmonic function $\Phi(x, y)$ satisfying the boundary conditions specified in part (a), determine the corresponding harmonic function in the w-plane, carefully stating your reasoning.

[4 marks]

THE UNIVERSITY of LIVERPOOL

7. The Fourier transform of a function f(x) suitably defined on $-\infty < x < \infty$ and its inverse are given respectively by

$$F(f(x);\omega) = \bar{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$$

$$F^{-1}(\bar{f}(\omega);x) = f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \bar{f}(\omega) e^{i\omega x} d\omega$$
.

Show that the Fourier transform of the *n*th derivative of f(x), denoted by $f^{(n)}(x)$, satisfies

$$F\left(f^{(n)}(x);\omega\right) = (i\omega)^n \bar{f}(\omega)$$

where $f^{(r)}(x) \to 0$ as $x \to \pm \infty$ with $0 \le r \le n-1$. Show that the Fourier transform of the function $f(x) = e^{-a|x|}$ is

$$\bar{f}(\omega) = \frac{2a}{(a^2 + \omega^2)}$$

where a is constant and a > 0.

The function $\phi(x, y)$ satisfies Laplace's equation for all x and for y > 0 subject to the boundary conditions

$$\phi(x,0) = Ae^{-a|x|}$$
 and $\phi(x,y) \rightarrow 0$ as $y \rightarrow \infty$

where A is a constant. Show that

$$\phi(x,y) = \frac{aA}{\pi} \int_{-\infty}^{\infty} d\omega \, \frac{e^{-|\omega|y} e^{i\omega x}}{(a^2 + \omega^2)} .$$

By assuming that

$$F\left(\frac{b}{\pi(x^2+b^2)};\omega\right) = e^{-|\omega|b}$$

for arbitrary b, use the convolution theorem to deduce

$$\phi(x,y) = \frac{Ay}{\pi} \int_{-\infty}^{\infty} du \, \frac{e^{-a|u|}}{[(x-u)^2 + y^2]} \, .$$

[20 marks]