PAPER CODE NO. MATH323

JANUARY 2004 EXAMINATIONS

Bachelor of Science : Year 3
Bachelor of Science : Year 4
Master of Mathematics : Year 3
Master of Physics : Year 3
Master of Physics : Year 4
Master of Science : Year 1

No qualification aimed for : Year 1

FURTHER METHODS OF APPLIED MATHEMATICS

TIME ALLOWED: Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

Full marks can be obtained for complete answers to FIVE questions. Only the best five answers will be taken into account.

THE UNIVERSITY of LIVERPOOL

1. Using the method of variation of arbitrary constants, find the general solution of the ordinary differential equation

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = \frac{e^{2x}}{(x^2+1)}.$$

[20 marks]

2. Write down the differential equation satisfied by the function y(x) for which the functional

$$I[y] = \int_a^b F(x, y, y') dx$$
 with $y(a) = y_0$, $y(b) = y_1$

is stationary, where y_0 and y_1 are constants.

Show that the function y(x) which extremises the functional

$$I[y] = \int_{2}^{4} \left[x^{7} (y')^{2} - 9x^{5}y^{2} \right] dx$$

satisfies the differential equation

$$x^2y'' + 7xy' + 9y = 0.$$

By seeking a solution of the form

$$y = Ax^n + Bx^n \ln x$$

where A, B and n are constants, determine the function which extremises I[y] subject to the boundary conditions, y(2) = 8 and y(4) = 1.

Evaluate the corresponding extreme value of I[y] and compare it with the value of I for a straight line joining the two endpoints. Establish whether the extremising function maximises or minimises I.

THE UNIVERSITY of LIVERPOOL

3. Indicate briefly how you would find the function y(x) satisfying $y(a) = y_0$ and $y(b) = y_1$, such that the functional

$$I[y] = \int_a^b F(x, y, y') dx$$

is stationary subject to the condition that a second functional

$$J[y] = \int_a^b G(x,y,y') dx$$

is equal to a constant.

A chain of length L hangs below the x-axis between the points (0,0) and (4,0) in the (x,y) plane, where the positive y direction is in the same sense as gravity, in such a way that its potential P is minimised where

$$P = \int_0^4 y \left[1 + (y')^2\right]^{1/2} dx$$

and

$$L = \int_0^4 \left[1 + (y')^2\right]^{1/2} dx$$
.

Show that the extremal curve satisfies the differential equation

$$\frac{dy}{dx} = \left[\left(\frac{y+\alpha}{\beta} \right)^2 - 1 \right]^{1/2}$$

where α and β are constants.

If L = 6 find the extremal curve.

You may assume that cosh x is an even function and that the numerical solution to the equation

$$x \sinh\left(\frac{2}{x}\right) = 3$$

is x = -1.23295.

THE UNIVERSITY of LIVERPOOL

4. The functions u(x,y) and v(x,y) satisfy the simultaneous partial differential equations

$$v_x + 4xu_y = 0$$

$$u_x + xv_y = 0.$$

Show that this system of differential equations is hyperbolic with characteristics

$$y - x^2 = \eta = \text{constant}$$

 $y + x^2 = \nu = \text{constant}$.

Hence show that the Riemann invariants of the system are

$$2u + v = \text{constant}$$
 and $v - 2u = \text{constant}$.

Find solutions u(x,y) and v(x,y) such that

$$u(x,0) = \frac{x^2}{6}(x^2 - 1)$$
 and $v(x,0) = -\frac{2}{3}x^2$.

[20 marks]

5. Show that the partial differential equation satisfied by u(x, y),

$$x^2 u_{xx} - 4y^2 u_{yy} = F(x, y, u_x, u_y)$$

with $x \neq 0$ and $y \neq 0$, is hyperbolic with characteristics

$$\eta(x,y) = \frac{y}{x^2} = \text{constant}$$
 and $\nu(x,y) = x^2y = \text{constant}$.

Show that the canonical form of this partial differential equation is

$$-16\eta\nu u_{\eta\nu} + 6\eta u_{\eta} + 2\nu u_{\nu} = F .$$

Find the general solution when

$$F = \frac{x}{2}u_x + yu_y.$$

THE UNIVERSITY of LIVERPOOL

6. Show that the Joukowski transformation, where $z \neq 0$,

$$w = u + iv = z + \frac{1}{z}$$

is conformal for all $z \neq \pm 1$, where u and v are real and w and z are complex variables.

Find u and v in terms of polar coordinates r and θ where $z = re^{i\theta}$.

Show that the circles |z|=2 and $|z|=\frac{1}{2}$ are mapped to the same ellipse,

$$E_1: \quad 9u^2 + 25v^2 = \frac{225}{4} ,$$

in the w-plane. Hence show that the exterior of |z|=2 is mapped to the exterior of E_1 .

The potential Φ outside the circular region |z|=2 is given by

$$\Phi = \operatorname{Re}(A \ln z) = A \ln r$$

where A is a real constant. Show that Φ satisfies Laplace's equation in polar coordinates:

$$\frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} = 0.$$

By clearly stating your reasoning, show that the potential outside the ellipse E_1 is given by

$$\Phi \ = \ A \operatorname{Re} \, \ln \left[\frac{w + \sqrt{(w^2 - 4)}}{2} \right] \ .$$

Determine the real and imaginary parts of the potential at the point w=3i.

THE UNIVERSITY of LIVERPOOL

7. The Fourier transform of a function f(x) suitably defined on $-\infty < x < \infty$ and its inverse are respectively

$$F(f(x);\omega) = \bar{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$$

$$F^{-1}(\bar{f}(\omega);x) = f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \bar{f}(\omega) e^{i\omega x} dx.$$

By using integration by parts show that when $f(x) = e^{-a^2x^2}$ its Fourier transform, $\bar{f}(\omega)$, satisfies the first order differential equation

$$\bar{f}'(\omega) = -\frac{\omega}{2a^2}\bar{f}(\omega)$$

where a is a real non-zero constant.

By considering the square of $\bar{f}(0)$ show that for $f(x) = e^{-a^2x^2}$

$$\bar{f}(0) = \frac{\sqrt{\pi}}{a}$$
.

Hence show that

$$F\left(e^{-a^2x^2};\omega\right) = \frac{\sqrt{\pi}}{a}e^{-\frac{\omega^2}{4a^2}}$$
.

The function u(x,t) satisfies the partial differential equation

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$

for $t \geq 0$ subject to the initial conditions

$$u(x,0) = g(x)$$
 , $u, u_x \rightarrow 0$ as $x \rightarrow \pm \infty$

where c is a constant.

By using a Fourier transform show that u(x,t) is given by

$$u(x,t) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} g\left(x - 2cz\sqrt{t}\right) e^{-z^2} dz.$$

[You may assume that the convolution theorem for the product of two Fourier transforms, $\bar{g}(\omega)$ and $\bar{h}(\omega)$, is

$$\int_{-\infty}^{\infty} \bar{g}(\omega) \bar{h}(\omega) e^{i\omega x} d\omega = 2\pi \int_{-\infty}^{\infty} g(z) h(x-z) dz.$$