PAPER CODE NO. MATH323

JANUARY 2003 EXAMINATIONS

Bachelor of Science : Year 3
Bachelor of Science : Year 4
Master of Mathematics : Year 3
Master of Mathematics : Year 4

FURTHER METHODS OF APPLIED MATHEMATICS

TIME ALLOWED: Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

Full marks can be obtained for complete answers to FIVE questions. Only the best five answers will be taken into account.

THE UNIVERSITY of LIVERPOOL

1. By seeking a solution of the form $y = Ax^n$ where A and n are constants, find the general solution of

$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = 0.$$

Show that the same method does not generate the general solution of the differential equation

$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = 0.$$

Verify that the general solution in this case is in fact

$$y(x) = c_1 x^2 + c_2 x^2 \ln x$$

where c_1 and c_2 are arbitrary constants.

Using the method of variation of arbritrary constants, find the general solution of the differential equation

$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2x^2.$$

[20 marks]

2. Write down the differential equation satisfied by the function y(x) for which the functional

$$I[y] = \int_a^b F(x, y') dx$$
 with $y(a) = y_0$, $y(b) = y_1$

is stationary, where y_0 and y_1 are constants.

Given

$$I[y] = \int_{\frac{1}{2}}^{1} y' \left[1 + x^{3}y'\right] dx$$
 with $y(\frac{1}{2}) = 0$, $y(1) = 3$

show that the extremising function satisfies

$$\frac{dy}{dx} = \frac{A}{x^3} .$$

where A is a constant.

Integrate this equation and use the boundary conditions to determine the extremal y(x) and calculate the corresponding extreme value of I[y].

Compare this result with the value of I obtained for a straight line joining the endpoints. What is the nature of the extremum?

[20 marks]

THE UNIVERSITY of LIVERPOOL

3. A dynamical system with one degree of freedom q(t) is described by the Lagrangian $L(q, \dot{q}, t)$ where $\dot{q} = dq/dt$. Write down Lagrange's equation. The Hamiltonian H is defined by

$$H(q, p, t) = p\dot{q} - L$$

where $p = \partial L/\partial \dot{q}$. Given Lagrange's equation show that Hamilton's equations,

$$\frac{\partial H}{\partial q} \ = \ - \ \dot{p} \quad , \quad \frac{\partial H}{\partial p} \ = \ \dot{q} \ ,$$

A particle of mass m in motion on the x-axis in a potential V(x) is described by the Hamiltonian

$$H(x, p, t) = \frac{p^2}{2m}e^{-at} + V(x, t)$$

where a is a positive constant. Write down Hamilton's equations for the

In the case when $V(x,t) = kx \cos(\omega t)$ find x(t) when the initial conditions are x(0) = 0 and $p(0) = p_0$. Describe what happens to the particle as $t \to \infty$. [20 marks]

4. The functions u(x,y) and v(x,y) satisfy the simultaneous partial differential equations

$$u_x - 2u_y - 3v_y = 0 3u_x + 2v_x + 2v_y = 0 .$$

Show that this system of differential equations is hyperbolic with characteristics

$$x + 2y = \alpha = \text{constant}$$

 $4x - y = \beta = \text{constant}$.

Hence show that the Riemann invariants of the system are

$$u + 2v = \text{constant}$$
 and $2u + v = \text{constant}$.

Find solutions u(x,y) and v(x,y) such that $u(0,y)=y^3$ and v(0,y)=-y. [20 marks]

THE UNIVERSITY of LIVERPOOL

5. Show that the partial differential equation satisfied by u(x,y),

$$x^2 u_{xx} - 4x u_{xy} + 4u_{yy} + 2u_y = 2x^3$$

where $x \neq 0$, is parabolic with characteristics

$$\eta(x,y) = y + 2 \ln x = \text{constant}$$
 and $\nu(x,y) = \text{constant}$

where $\nu(x,y)$ satisfies $x\nu_x \neq 2\nu_y$, justifying the origin of this condition. By choosing $\nu = x$ reduce the partial differential equation to the canonical form

$$\frac{\partial^2 u}{\partial \nu^2} = 2\nu$$

and find its general solution in terms of x and y. Determine the particular solution if

$$u(x,0) = \frac{x^3}{3} + 4(x-1)(\ln x)^2$$
 and $u(1,y) = \frac{1}{3}$.

[20 marks]

6. Show that the most general solution of Laplace's equation

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$$

which is independent of y is given by $\Phi = Ax + B$ where A and B are constants. Determine A and B given that $\Phi = 2$ when x = 1 and $\Phi = -2$ when x = 2.

Verify that the transformation $w=e^{\pi z}$ is conformal for all z where w=u+iv and z=x+iy. Show that $w=e^{\pi z}$ maps the interior of the rectangle with vertices (1,1), (2,1), (2,-1) and (1,-1) into the region bounded by concentric circles centred on the origin of radii e^{π} and $e^{2\pi}$. Sketch both regions indicating clearly where the vertices are mapped to in the w-plane. Hence determine the solution to Laplace's equation, $\Phi(u,v)$, in the region between the circles

$$u^2 + v^2 = e^{2\pi}$$
 and $u^2 + v^2 = e^{4\pi}$

in the (u,v)-plane given that $\Phi=2$ on the inner circle and $\Phi=-2$ on the outer circle.

[20 marks]

THE UNIVERSITY of LIVERPOOL

7. The Fourier sine transform of a function f(x) defined on $0 < x < \infty$ is

$$F_s(f(x);\omega) = \bar{f}_s(\omega) = \int_0^\infty f(x)\sin(\omega x) dx$$

where the inverse transform is

$$f(x) = \frac{2}{\pi} \int_0^\infty \bar{f}_s(\omega) \sin(\omega x) d\omega .$$

Show that for a function f(x) such that both $f(x) \to 0$ and $f'(x) \to 0$ as $x \to \infty$

$$F_s(f''(x);\omega) = - \omega^2 F_s(f(x);\omega) + \omega f(0) .$$

The function u(x,t) satisfies the partial differential equation

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

where $0 < x < \infty$ and $0 < t < \infty$ and is subject to the boundary conditions u(0,t) = A and u(x,0) = 0 where A is constant. Show, by taking the Fourier sine transform, that

$$u(x,t) = \frac{2A}{\pi} \int_0^\infty \frac{d\omega}{\omega} \left[1 - e^{-k\omega^2 t} \right] \sin(\omega x) .$$

Determine the value of u(x,t) as $t \to \infty$.

You may use the result

$$\int_0^\infty dx \, \frac{\sin x}{x} = \frac{\pi}{2}$$

without derivation.]

[20 marks]