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1. (a) f(x) is a continuous, differentiable and invertible function with domain
[0,1] and range [0,1]. f(z) has only three fixed points: unstable fixed points at
x =0 and 1, and a stable fixed point at x = 0.5.

(i) Sketch the graph of f(x). [2 marks]
(ii) Find the basin of attraction for the stable fixed point and indicate it on
the graph. [1 marks]

(b) A tent map f(z) for z in [0, 1] is defined as

f(z) =3pux for x <

DN | =

f(x) =3u(l —xz) for = > %

where 0 < p < 1.
Consider the dynamical system given by iterations of this map

Tpt1 = f(xn)

(i) Sketch the graph of the function f(z) for the two cases p < 1/3 and

p>1/3. [3 marks]
(ii) Show that, provided that p # 1/3, the fixed points are z* = 0 for any p
and z* = 3u/(1+ 3p) if 4 > 1/3. [7 marks]
(iii) Show that z* = 0 is a stable fixed point for p < 1/3 and that 2* =
31/ (14 3p) is an unstable fixed point. [7 marks]
Solution

(a) (i) Since the function is continuous, differentiable and invertible, with
domain and range [0, 1], it must be as below. [2 marks]
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(ii) Since the fixed point at x = 1/2 is stable, and the other fixed points
are unstable, the basin of attraction for the stable fixed point must be ]0,1[, as
indicated. [1 mark|

(b) (i) For u < 1/3 the graph is thus
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For 1 > 1/3 the graph is thus

4

0

[3 marks]
(i) Fixed points are where z = f(x).
Two cases to consider

x<1/2

and

r>1/2
If < 1/2 we need

r=f(r) = 3ux
—a(1-31) = 0
Sro= 0 (A1)

If z > 1/2 we need

v=f(r) = 3u(l-w)
=z+3ur = 3p

=5 =

1+3u
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But z = is only > 1/2 as required if

3

1+ 3p
=3u > 1/24(3/2)u
=pu > 1/3.

> 1/2

3
Hence, for p # 1/3, the fixed points are z* = 0 for any p and z* = a
p > 1/3. [7 marks]
(iii) For stability we need |f'(z*)| < 1.

For x* =0, f' = 3u so in this case we need

Bul < 1
=3u < 1 0<pu<1)
=upn < 1/3
34
For z* = "= —3u.
or x 1+3u’f I

But p > 1/3 for this fixed point so

[f'(@)] =1=3ul>1

Hence this fixed point is unstable. [7 marks]

[All covered in problem sheets, tutorials and lectures]
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2. (a) Consider the dynamical system obtained by iterating the map

flx) =1—2ua’

forx € [-1,1] and 0 < p < 2.

Show that one of the fixed points of the system is at z* = (—1++/1 + 8u)/4u
and show that this fixed point is stable if u < 3/8. [5 marks]

(b) Now investigate the properties of f®(z) = f(f(x)).
(i) Show that this map has an additional fixed point at

o 1++8u—3

=
[8 marks]
(ii) Show that x* corresponds to a 2-cycle of f(x) and that this is stable for
3/8 < pu<5/8. [7 marks]

Solution

(a) For fixed points we need

r=f(z) = 1-2ux*
=2ur*+xr—-1 = 0

—1+1+8
=71 = +op
4p
Hence the system has a fixed point at
o —1+1+8u
= i .
For stability we need |f'(z*)| < 1.
Now f'(z) = —4px so
. —1++/1+8u
Plat) = - (ZLE)
1
= 1—+/1+8u

Hence for |f'(z*)| < 1 we need
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-1 < 1-/1+8u<1
= -2 < —/1+8u<0
=2 > /1+8u>0
=4 > 14+8u>0 (> 0)
=3 > 8u>-—-1
= —-1/8 < pu<3/8

Hence the fixed point is stable if © < 3/8 since > 0. [5 marks]
(b) (i) For f®(z) we have

) = 1-2p(1 - 2uz’)
= 1 —2u(1 + 442" — 4pa®)
= 1—2u—8uPz" + 8u’a?
= —8ulrt +8u*2® —2u+1

Hence for fixed points we need

r=fOx) = —8ulat 4+ 8u2z? —2u+1
= 8zt — 8t +x+2u—1 = 0 (1)

Now we know that the fixed points of f(z) are also fixed points of () so,
from part (a), (2uz? 4+ x —1) is a factor of the LHS of equation (1). Let the other
factor be (Az* + Bx + C).

Substituting, expanding, and collecting terms we have

(2ux® + 2 — 1)(Az* + Bx + C) 2uAx + Az® — Az® + 2uBa® + Ba® — Bx
+ 2uC2*+Cx —C
= 2uAz’ + (A +2uB)2® + (—A + B + 2u0)2?

+ (-B+C)z—C.

Comparing coefficients in this and the LHS of equation (1) we have:

For z*

2nA = 8ub

= A = 44°
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For 23

A+2uB = 0
A
=B = —=-2u
21
For constant terms
—C = 2u—1

=C = 1-2pu.

This is sufficient but we can also check with the 22 and z terms.

For 22

—A+B+2uC = —4p% — 2+ 2 — 44
= _8/*L27

which is correct.
For x
—B+C=2u+1-2pu=1,

which is correct.

Hence the two fixed points of f()(x) which are not also fixed points of f(z),

which we already know from above, are the roots of

4pPa® —2ur +1 -2 =0

SO are

L 2u /A —16p2(1 = 2p)
82
2u+ /3202 — 1212
8142
20+ 2p/8p — 3
8142

14++8u—3

4p '
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Hence f?)(x) has an additional fixed point at

. 1+8u—3
r=———.
Ap

[8 marks]

(ii) Tterating using f starting at xy = 2* we have

r1 = f(x0) = f(7).
Applying f again we have

To =

Hence z* corresponds to a 2-cycle of f(z).

For stability we need

)
dz -
Using the chain rule we have
d(f(f(x)| _ df| df
dx o dr o AT,

where 2, x5 are the two fixed points of f® which are not fixed points of f.
Hence we have

df(f@) | _ (—4pw)(—4pzs)
dx o
o (1+V8 =3\ (1-v8u=3
= 16u ( Ap >< 4p )
= 1—-8u+3
= 4—8u.

Hence for stability we need
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|4 —8u| < 1

=—-1 < 4-8u<1
= -5 < —8u< -3
=5 > 8u>3

=3/8 < u<5/8.

Hence the 2-cycle is stable for 3/8 < u < 5/8, as required. [7 marks]
[All covered in problem sheets, tutorials and lectures]

3. Consider the dynamical systems defined by iterations of a function f(x)
in the following four cases:

(i) f(z) =3z (mod 1)

(i)  f(z)=z+2.1 (mod 1)
(iii)  f(z)=v32?, 0<z<1
(iv)  f(x)=5r—-32%  2€R

(a) In each case, find any fixed points and determine their stability. [8 marks]

(b) For cases (i) and (ii), find the Lyapunov exponent and say what you can

deduce from its value. [8 marks]

(c) For cases (i) and (ii), discuss the limiting behaviour as n — oo and how
this is affected by the starting value, . [4 marks]
Solution

(a) (i) Although the question does not ask for a graph, we do a sketch to help
locate the fixed points. The graph is thus
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From the graph we can see that there are two fixed points, which we need to
find analytically, as follows.

For fixed points we need x = f(z).

In this case we need

r = f(zr)=3x (mod 1)
=3r = v+0=2=0

or

Jr=r+1=2=1/2.

Note that = = 1 is not a fixed point since

f1) = 3 (mod1)
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Hence the fixed points are at © = 0 and = 1/2.

Since f'(x) = 3 throughout the range of x, and 3 > 1, both fixed points are
unstable.

(ii) Again we do a graph, which is thus

)1 )

O o= | e

We see from the graph that there are no fixed points since the graph of f(x)
never intersects that of f(r) = x. We show this analytically as follows.

We need
x=f(x) = x+2.1 (mod 1)
=>r+21 = z+0=ux.

This equation can never be true so there are no fixed points.

(iii) We note that the function is a simple quadratic and again we can draw
a quick graph, which is thus
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This shows that there are two fixed points, one at x = 0, but we need to
locate the non-zero fixed point analytically.

We need
r=f(z) = V32
=V322—z = 0
= z(V3r—-1) =

=z = 0 or r=1/V3

Hence fixed points are at # = 0 and z = 1//3

We have f'(z) = 2v/3z

Hence at x = 0, f'(0) = 0 so the fixed point at x = 0 is superstable.
Atz =1/v3, f'(1/V/3) =250 |f'| > 1 and the fixed point is unstable.

(iv) The function is too complicated for it to be worth doing a graph. Hence
we work purely analytically.

In this case we need

r=f(r) = b5z— 32"
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=32’ -4z = 0
= 2(32>—4) = 0
=z = 0 or 307 =4 =1 ==42/V3

Hence fixed points are at z = 0, x = 2/\/§ and x = —2/\/5.
f'(z) =5 — 922
Hence at z =0, f'(0) =5 > 1 so the fixed point is unstable.

At both z = 2/v/3 and at + = —2//3, we have f' =5 -9 x 4/3 = -7 so
|f'| > 1 and both fixed points are unstable. [8 marks]

(b) (i) Starting with xg, the iterations are as follows

T = 3 (mod 1)
zo = 3z = 3%z (mod 1)
r, = 3"z (mod 1)

dx
Hence d—" = 3" so the Lyapunov exponent, A, is given by
Zo

1
A = lim —1In
n—oo N

dx,

dl‘o

1
= lim —In(3")

n—oo N,

1
= lim —nlIn(3) =In(3) >0

n—oo M,

Since A > 0 the motion can be chaotic (depending on the starting value), with
nearby trajectories diverging.

(b) (ii) Starting with xg, the iterations are as follows

1 = Xp+ 2.1 (rnod 1)
To = m+21=x0+2x21 (mod 1)
Tn = wp+mnx21 (mod 1)

x
Hence —= =1 so the Lyapunov exponent, )\, is given by
To
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1
A= lim —In1 =0

n—oo N,

Hence, the motion is not chaotic and, since 2.1 is a rational number, the
motion is periodic. [8 marks]

(c) (i) From above, the fixed points are unstable and the motion chaotic if
not starting at a fixed point and if x, is irrational. If x, is rational we have
periodic behaviour (including lcycles). There is sensitive dependence on the
initial conditions, with neighbouring trajectories diverging.

(ii) Since 2.1 is rational, the motion is periodic. Since, in its lowest terms, we

have 2.1 = 10’ we have a 10-cycle. We can show this as follows.

21
Tpt1o = Tp+ 10 x 1—0 (mod ].)

T, + 21 (mod 1)

= :L‘n

[4 marks]

[Past exam question. All covered in tutorials, lectures and classwork]
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4. Consider the dynamical system =, 11 = f(Zn, Yn), Ynt1 = 9(Tn, yn) gener-
ated by the functions

flz,y) = 22—y’ +a
g(z,y) = 3wy,

where a is a constant.
(i) Show that the system has fixed points given by z* = 1 (1 £ /1 —4a), y* =

0 fora <1/4 and z* =1/3, y* = +1 (/9a — 2) for a > 2/9. [7 marks]
(ii) Linearize the system about the appropriate fixed points for a < 2/9 and
show that the system has a stable fixed point for —4/9 < a < 2/9. [8 marks]

(iii) Consider the set of points on a circle of radius r centred at the origin.
Show that they are mapped under one step of this dynamical system to an ellipse
and sketch the ellipse for a = 2,r = 1. [5 marks]

Solution

(i) The system is

f(xay) - x2—y2+a
g(z,y) = 3wy

where a is a constant.

For the fixed points we need, simultaneously

v=fr,y)=2"—y +a (1)

and
y=g(z,y) =3zy  (2).

Rearranging equation (2) we have

yBzx—1) = 0
=y =0 or x=1/3.

For y = 0, substituting in equation (1) gives
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P —zx+a = 0
1++1—4a

= —
o 2

This is an acceptable (real) solution for 1 —4a > 0= a < 1/4.

Hence there are fixed points at

= %(1 L VI da),y =0 (a<1/4).

For x = 1/3, substituting in equation (1) gives

1/3 = 1/9—y*+a
=1y’ = a—2/9

=y = j:%(\/9a— 2).

This is an acceptable (real) solution for 9a —2 > 0 = a > 2/9.

Hence the other fixed points are at

= 1/3,y = i%(\/9a =3 (a>2/9).

[7 marks]
(ii) For a < 2/9 we only need to consider the first fixed points.

The Jacobian matrix is given by

af  of
| ox oy | _ |20 -2
TS o o _{i’w 356}'
ox dy

Since y = 0 for both fixed points, it is easiest to substitute this value in the
Jacobian matrix to give, at the fixed points,

2z 0
Ilrers = { 0 3z ] '
We note that this is a diagonal matrix so its eigenvalues are just the diagonal

entries so, denoting the fixed points as 7, and z* in the usual way, and the two
eigenvalues in each case by A\; and Ay we have

*
For x
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A o=22" =14+/1—4a

and

3
)\2 :331': = 5(14—\/1—4@)

Hence, since /1 —4a > 0 for a < 2/9, [A\{|,|A2] > 1 so this fixed point is
unstable.

For x*

M =22 =1—+/1—4a

and

)\2:31')1 = ;(1—\/1—461)

|A1] is clearly < 1 for a < 2/9.
For |A2] < 1 we need

|;(1—\/—1—4a)| <1

;»_1<g(1_m)<1
= —2/3<1—+1—-4a<2/3
= —5/3< —/1—4a < —1/3
= 5/3>V1—4a>1/3
=25/9>1—4a>1/9

= 16/9 > —4a > —8/9

= —16/9 < 4a < 8/9

= —-4/9<a<2/9

Hence there is a stable fixed point for —4/9 < a < 2/9. [8 marks]

(iii) Points on a circle of radius r centred at the origin have coordinates

xTo = rcosb, Yo = rsin @,

where r and 6 are the usual polar coordinates.

Substituting in the system equations, under one step of the system the circle
is mapped to the set of points (1, y;) given by
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xlzxg—y§+a = r2cos?f — r?sin?0 +a
= r%cos(20) +a

and

v = 3x0yy = 3r’sinfcosf
3
= 57“2 sin(20)

Changing variables to 21 — a = z; to move the origin to the point (a,0) we
have

T —a =z = r’cos(26)

3
Y= 57“2 sin(26).

Hence

2
cos(20) = Z—; and sin(26) = gy—;
r r

s0, since cos?(26) + sin?(26) = 1,

4w
4 ort

= 7(1‘1 _ CL)2 y—% =1

r4 I )

Comparing with the standard equation

2 Y2
FERE-Thal
for an ellipse centred at the origin, with semi-axes of lengths A and B, this is
an ellipse centred at (a,0) with semi-axes of lengths r? and 372,

With a = 2 and r = 1 the ellipse is as shown below.
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[5 marks]

[All covered in problem sheets, tutorials and lectures]
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Consider the dynamical system described by the equations
d
d_f = (1—2)(1 - bx) + 22%
d
d_?i = ba(l —x) — 227y,

where b is a real positive parameter.

(i) Find the fixed point of the system and discuss its stability for b > 0, with
3 and b # 3+ 2v/2. [ 8 marks]

(ii) For the particular case of the system when b = 4, consider trajectories

which pass through the four points (1/4,0), (1,1), (2,0), and (1, —1) and sketch

the directions of the tangents to these trajectories. [7 marks]
(iii) Give plausibility only arguments that the system has a stable limit cycle

when b = 4. [3 marks]
(iv) Discuss whether this system exhibits chaotic behaviour. [2 marks]
Solution

(i) For the fixed point we need, simultaneously,

Z_f — flay) =1 —2)1—br) + 2%y =0 (1)
and

dy 2

S =gy =be(l-z) -2y =0 (2

Noting the common term 2x?y we add equations (1) and (2) to give

1-—z)(I—-bx)+bx(l—2z) = 0
=1-2)1-br+bxr) = (1—2)=0
=z = 1.

Substituting in equation (2) now gives
-2y = 0
=y = 0.

Hence the system has a single fixed point at (1,0).
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To investigate the stability of the fixed point we need the Jacobian matrix

of of
_ | ox 0
R
ox dy

evaluated at (1,0).
Differentiating, we have

g—f = —(1—bx)—b(1—2x)+4xy
T
= —1—0+42bzx + 4xy
SO 8_f =b—-1
o0x (1,0)
of 2
L —9
dy o
SO 8_f = 2.
Y |1,0)
%:b(l—x)—bx—élxy
SO @ = —b.
ox (1,0)
dg 9
7 9
dy v
SO @ = —2.
91,0
Hence we have
b—1 2

Characteristic equation to find eigenvalues of J is

det(J—X) = 0

‘b—l—)\ 2‘
—b —2— A

S b=1=MN(=2=XN)+20 = 0
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= 2+ 2422 -+ A+ XN +20 = 0
=M+ B-A+2 =
(b—3)+/(b—3)2—8

P —
= 2

The nature of A depends on the square root term. If

(b-32-8 < 0

= (b-3)? < 8

= —2V2 < b—3<2V/2
3-2V2 < b<3+2V2

we have a complex conjugate pair of eigenvalues

V(=3 £i/B— (-3

- 9

and, hence, spiral behaviour.

Stability depends on Re(A4).

If b > 3, Re(A+) > 0 so the fixed point is an unstable spiral repellor.

If b < 3, Re(A+) < 0 so the fixed point is a stable spiral attracting node.

b # 3 given.

If(b—3)2>8=0<b<3-2/2(=0.17) or b > 3+ 2v/2 (~ 5.83) there
are two real eigenvalues.

If0O<b<3—2/2wehave =3 <b—3< —2v/25s0 b—3 < 0 and hence
3—0b>0. A_is clearly < 0 in this case. A, is also < 0 since we have

VbO=3)2-8=+y/B-02-8 < 3-b (3—-0>0)
=b—-3++y/(3-02-8 < 0

Hence in this case the FP is a stable node.

If b > 3 +2v/2, on the other hand, b —3 > 0 so /(b —3)2 —8 < b — 3 and
hence Ay > 0.

Hence in this case the FP is an unstable node. [8 marks]
(ii) Case b=4.

Tabulating the values at the given points we have
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T dz/dt

(x,y) dx/dt dy/dt dy /dz = 24
(1—2)(1 — 42) + 222y 4r(1 —x) — 22%y

(1/4,0) 0 >0 +00

(1,1) 2 9 1

(2,0) 7 -8 87

(1, 1) 9 > -

Hence the tangent directions are as shown below.
"} A

[7 marks]

(iii) From part (i), the fixed point at (1,0) is an unstable spiral repellor for
b = 4. From the tangent directions, the trajectory is close to a limit cycle. This
suggests that there is a limit cycle when b ~ 4.

Now b = 4 is between the change from a spiral attractor to a spiral repellor at
b = 3 and the change from a spiral repellor to an unstable node at b = 3 + 2v/2.
It is plausible that there is a Hopf bifurcation at b = 3, giving rise to the spiral
repellor with a surrounding limit cycle. [3 marks]

(iv) Being a 2-D continuous time system with ODE’s, this system cannot
exhibit chaotic behaviour because of the Poincare-Bendixson Theorem, which
states that trajectories approach either a fixed point or a limit cycle. 3-D is
required for chaos. The Poincare-Bendixson Theorem is a result of the region
being bounded and the No-crossing Theorem. [2 marks]

[All covered in problem sheets, tutorials and lectures]
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6. (a) The Sierpinski carpet is constructed from a unit square by dividing the
square into 3 x 3 smaller equal squares, removing the central smaller square to
leave the 8 smaller squares around the perimeter, then repeating the procedure
for these 8 squares, and so on.

(i) Sketch the first three levels of this process, starting with and including the
unit square itself. [2 marks]
(ii) Find the capacity dimension of the resulting infinite set. [4 marks]

(b) A dynamical system on [0, 1] is given by

Tny1 = f(2n)

where
1 3
— f - 2
f(x) 0 or 1 <7<
flz) = 4z (mod 1), otherwise.
(i) Sketch the graph of f(x). [2 marks]
(ii) Show that the fixed points of this system are unstable. [2 marks]
(iii) Consider the set S of initial points x¢ for which z,, # 0 as n — oo. Obtain
a description of S and use it to find the capacity dimension of S. [8 marks]
(iv) Give an example in base 4 of an initial value z, for which the system will
show periodic behaviour. [2 marks]
Solution

(a) (i) The first three stages are thus

% oy c g it FEEEUUMER E
Z/_; "'{;/}‘ .’/ o f [B]a i3 | =
i : N e 7 SRR K TR I P P ey e
:.’"J} g e i bl
d P o I "
...__-> A R —_ :
o,-!-f Lo ) }z - o ol * 1o
R e e (e e
R Bty A 4l In e vl D
L R S
' < B sla Al [ k)~
1

[2 marks]
(ii) Using boxes which cover the individual small squares, and tabulating the

levels, we have
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Level No. of boxes, N(e) Size of boxes, €
0 1 1
1 8 1/3
2 8 x 8§ = 8 1/3 x 1/3 = (1/3)?
n /" (1/3)™

Hence, for the capacity dimension, d., we need the limit, as n — oo, of

N(e) = 8" = A((1/3)") % = A(3)"%

where A is a constant.

Taking logs we have

nln8 =In A+ nd.In3
1

= In8=—-InA+d.In3.
n

The first term on the RHS clearly — 0 as n — oo so we have

In8 = d.In3
In8
d. = — ~ 1.893.
= 3

[4 marks]
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(b) (i) The graph of f(z) is thus

O

0 e ‘

[2 marks]

(ii) From the graph, there is only one fixed point, at = = 0.

The point x = 1 is not a fixed point since f(1) =3 (mod 1) =0 # 1

At =0, f'(x) =4 so |f'(0)] > 1 and the fixed point is unstable. [2 marks]

(iii) The set S of initial points for which z,, # 0 as n — oo can be described
as follows.

Divide the interval [0, 1] into four equal subintervals, as in the above graph,
namely the 1,274 374 and 4" subintervals.

Denote by @ the operation of removal of the 2"¢ and 3"¢ subintervals, leaving
the other two. Now apply @ to each of the two remaining subintervals. Clearly,
f(f(x)) = 0 for every x in the 2"% and 3¢ parts of these subintervals, leaving us
with 22 = 4 subintervals. This process is repeated indefinitely to remove all
for which z,, — 0 as n — 0.
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Graphically, the procedure is similar to that for the Cantor set, but removing
the section of length 1/2 of the segment length in the centre of each of the
segments at each stage, thus

-
—

VC—F % I/Z. ' l/(_{—

s e it I

-
-

—

Using boxes to cover the line segments and tabulating the results we have

Level No. of bozes, N(e) Size of bozes, €
0 1 1
1 2 1/4
2 2% 2 =2 1/4x 1/4 = (1/4)?
n 2" (1/4)"

Using the same procedure as in part (a)(ii) we have

N(e) = 2" = A((1/4)") % = A(4)".

Taking logs we have

nln2 =1In A+ nd.In4
so, in the limit as n — oo,

d_1n2_

.= — =0.5.
In4

[8 marks|

(iv) A recurring expression with no ”1” or ”2” digits in base 4 will correspond
to a cycle and hence show periodic behaviour. For example, in base 4, the number

0.003003003...... recurring

corresponds to a 3-cycle. [2 marks]

[All covered in problem sheets, tutorials and lectures. Also past exam question
and classwork]
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7. Consider the Lorenz system

d_:r
dt
dy
dt
dz

dt

= pr—y—1az
= —z+uwy,

with p a real positive constant.

(i) Show that the origin is a fixed point, P; = (0,0,0), and that its stability
depends on eigenvalues A\ satisfying

A+1) [N +22+1—p]=0.

[5 marks]
(ii) Deduce that this fixed point is stable only when 0 < p < 1. [5 marks]
(iii) Show that there are two further fixed points

Py, Py={(£(p—1)"*, (-1, (p-1))} ,
when p > 1 and that their stability depends on eigenvalues A satisfying
M43+ (1+pA+2(p—1)=0.

[7 marks]
(iv) Show that, if z =2z — p — 1, then
1d

] 1 C 1 >
5%(x2+y2+22)=—x2—y2—{Z+§(p+1)] ++1)7,

so that y/x2 + y? + 2% decreases for all states outside a particular sphere (imply-
ing the existence of an attractor). [3 marks]

Solution

(i) The system is

Ccll_:f = y_x:f(l‘ayaz)
@ x—y—xz=g(x,y,2)
dt = p y =g\, Y,
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with p > 0.

dx dy dz
F\ fixed t d — = =
or a fixed point we nee il il i

This is clearly true for z = y = 2 = 0 so P, = (0,0,0) is a fixed point, as
required.

To investigate stability we need the eigenvalues of the Jacobian matrix, .J,
given by

of  of  Of ]
ox 8y 0z -1 1 0
g dg dg dg | _ [ -|
= | = = — | =1 p—=z -1 —T
O 0 0z [ 1J
oh  oh on| L v
| Oz dy 0z |
Substituting (z,y, z) = (0,0,0) we have
-1 1 0
J|P1 = P -1 0
0 0 -1

For the eigenvalues we need to solve det(.J — AI) = 0, giving

—1-=A 1 0

P —1-A 0

0 0 —1-A
$G4—M(1—M(1—M—(( A)

(1+2)\+)\2)(1—|—)\)+p(1+)\) =0

= (1+NN+22+1-p] = 0 (1)

as required. [5 marks]

(ii) For stability we need all solutions of equation (1) to have A < 0, or to
have Re()\) < 0.

A = —1 < 0 is one obvious solution.

Using the formula for the other two, and denoting them by Ay, we have

—24 /14— 41— p)
Ay = 5

= —1+p

Clearly A_ < 0 since \/p > 0 by definition.
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For A\; < 0 we need

—-1+,/p<0
=p<l1
=p<l1

Hence, since p > 0 by definition, P; is stable only when 0 < p < 1. [5 marks]
(iii) Fixed points are where

d

d—f = y—r=0=>y==x (1)
d

d—?i = pr—y—zz=0 (2)
= _ +xy =0 (3)

o = —rtay=

Substituting from equation (1) in equation (2) we have

pr—x—xz = 0
=z(p—1—2) =
=z = 0 or z=p—1.

Substituting y = x and z = p — 1 in equation (3) we have

—p+1+2"> = 0
= +/p-—1 (p > 1 so that z is real)

=y = v==24\/p—1

Hence there are two further fixed points at

Py Py ={(x(p— 1), £(p— 1) (p—1)}  (p>1).
Let R =4(p—1)"/2

Substituting in the Jacobian matrix as before we have

~1 1 0
Tlppp = | 1 ~1 ~R
R R ~1
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Hence, using det(.JJ — AI) = 0, we have

—1-2A 1 0
1 —1-A -R =0
R R —1-A

Py,Py

S (—1=N((-1=XN)(=1=XN)+R) - ((-1=XN)+R*) =0
S (-1 =-N1+22+ N +R)+1+A-R*=0

= —1-22 - XN -R-2A-2 - N -RA+1+A-R*=0
= N +3X2+ 2+ R)A+2R* =0

SN 4+3+2+p-DA+2(p—1)=0

=S AN +3+(1+pA+2(p—1)=0

as required. [7 marks]
(iv) Let z=2— p— 1.
Using the chain rule we have

1d, 9  _9 1 dx dy _dz
-4 Ty S A S
AR AR e+ 2+ 22 )
= gty oAz
T Ta Ve T w

dz d
Now from the definition of Z, we have e

primie il substituting using the

) dz
system equations for 7 etc. we have

1d, o 5 5 dz dy _dz

2dt(x Ty ) = SPTRR FTT
= z(y—z)+ylpr—y—2Z+p+1)+2(-Z—p—1+uay)
= ay—22+pry—y —ayZ—ayp—ay—2° —Zp— 2+ Y%

= 2Py - -zZ(p+1)

1 21
= —xQ—yQ—lz+§(p+1)] +Z(p—|—1)2

by completing the square, as required.

For \/22 + y2 + 7z to decrease we need

d
E(:ﬁ + 92 +7%) <0,
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which is true provided that

1 S|
—x2—y2—{z+§(p+1)] —|—Z(p+1)2<0
—? =y’ = [Z+3(p+1)] +1(p+1)? 0

- o+ 1) )

4

22—z L+ 2
= yl[ g(” ) +1<0
1(p+1)
2y’ [Frie+ ]
ip+1)?
z? & Z+1(p+1)] o
i+ glp+1)? g+ 1)

Comparing the LHS of this equation with the standard form for a sphere of

1,2 y2 Z2
FERITRE A

shows that /22 + y2 + z? decreases outside the sphere with equation

2 y? [ + %(p + 1)]
T+ 12 T2 Ity

implying the existence of an attractor since y/x2 + y2 + z2 is the distance of
the point (z,y,Z) from the origin. [3 marks]

[Past exam question. All covered in tutorials, lectures and classwork]
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