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INSTRUCTIONS TO CANDIDATES
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Consider the dynamical system given by iterations of a function:

Tni1 = f(Zn).
where the map f is f(z) = 3uz — 323, z €IR.

(i) Find the fixed points. Show that there is only one fixed point
for ;4 < 1/3 and there are three for u > 1/3.

2 marks

(ii) Using your results from part (i), determine stability of these
fixed points for all values of the parameter .

18 marks

(a) Consider the dynamical system given by iterations of a func-
tion:
Tni1 = Q(zn)-
where the quadratic map @) is given by

Q(z) = 22> — 0.5.

(i) Find the fixed points and determine their stability.
5 marks
(ii) Find the 2-periodic points and determine their stability.
10 marks
(b) Consider the dynamical system given by iterations of a function
Tpi1 = z/7. Find the Lyapunov exponent of the map and characterise
whether the behaviour of the system is chaotic or regular.

5 marks

Consider a nonlinear dynamical system defined by iterates of the
functional relationships
Tnt1 = f(Tn,Un)y  Yns1 = 9(Tn, Yn)
with f(z,y) = 1.4z — 0.222 — 0.1zy, g(z,y) = 1.4y — 0.2y* — 0.1zy.
(i) Find all equilibrium vectors of the system.
(i) Study the stability of the equilibrium vectors.

20 marks
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(a) In the plane Ozy, consider a figure ABCDEFGHI of 8 subin-
tervals whose ends A, B, C, D, E, F, G, H, I have the following
coordinates (0,0), (1/4,0), (1/4,1/4), (2/4,1/4), (2/4,0), (2/4,—1/4),
(3/4,—1/4), (3/4,0), (1,0), respectively.

Consider the operation ) of exchanging of an interval of size L by a
copy of the figure ABCDEFGHI with scaling factor A = L, i.e. if the
length of an interval is 1/4 then it is replaced by the 4 times reduced
figure ABCDEFGHI.

Apply @ initially to the interval AB and then to each of other 7 inter-
vals, i.e. first to BC' and so on until HI. Then apply @) again to each
of these smaller subintervals. The process is repeated infinitely.

Discuss whether the resulting set is self-similar under the discrete group
of coordinate dilation. If yes then find its scaling factor.

4 marks
Find box-counting dimension of the set.
5 marks

(b) A dynamical system defined on [0, 1] is given by
ZTnt1 = f(z,) where

1
f(z) =4z for 0§x<1

1 3
— 4z —2 for - °
flz) =4z or g<z<y

f(z) =0 otherwise.
Sketch f(z).
1 mark
Show that the fixed points of this system are unstable.

2 mark

Consider the set S of initial points z for which z,, is not eventually 0.
Obtain a description of S and use it to find the box-counting dimension
of S.

8 marks
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Consider the Weierstrass-Mandelbrot function for z > 0

F(z;p) = Z pP (1 —cosp™z), p>1, 1<D<2.

n——oo

(i) Show that F(z;p) is a parametric-homogeneous function of de-
gree d = (2 — D) and parameter p.
3 marks
(ii) Give a formulation of the decomposition theorem for parametric-
homogeneous functions. Applying the theorem, construct from F'(z; p)
other fractal parametric-homogeneous functions: by and b, of degree

d = 0 and d = 4 respectively, having the same parameter p. Describe
the scaling properties of the function b, and its trend.

7 marks

(iii) It is known that the box-counting dimension of the graph
F(z;p) is equal to D, calculate the box-counting dimension of the b,
graph.

5 marks

(iv) It is known that F'(z;p) is bounded in the neighbourhood of
x = 0. Show that the constructed function b4 is differentiable from the
right at x = 0 and find the derivative (z > 0).

5 marks
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(i) Discuss briefly some possible bifurcations that can occur as a pa-
rameter is varied in a dynamical system described by two autonomous
coupled differential equations.

2 marks

Consider the equations describing the dynamical behaviour of a system

dx
=y —?
i Y-y,

dy 2
—=1- 1
7 b+ 1y+y'z

where b is a real positive parameter.

Find the fixed point of the system and discuss its stability for b > 0,
and b # 2 and b # 4.

11 marks

(ii) For the particular case when b = 3, consider trajectories which
pass through the four points (2, 1), (3,2), (3,1/2), and (4,1) and sketch
the directions of the tangents to these trajectories.

5 marks

Give plausibility arguments that the system has a stable limit cycle
when b = 3.

2 marks
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7. Consider the equations

e _ _
it~ Y
d
d—‘?;:2z—z(z—:c)
d—z——x—z+2x
it v

Show that the trajectories cannot cross in phase space.

2 marks

Show that this system of equations describes a dissipative system.

2 marks
Show that the origin is a fixed point and find the other fixed point of
these equations.

4 marks
Consider first the fixed point at the origin: linearise the equations about

this fixed point and show that one eigenvalue is 1 and find the others.
Discuss the stability of this fixed point.

4 marks
For other fixed point: linearise the equations about it and find the

characteristic equations for the eigenvalues. Show that one of these
eigenvalues is -2 and find the others.

4 marks
Without evaluating the eigenvectors, describe briefly the motion of tra-
jectories which are near each of these two fixed points.

4 marks



