Math294 September 2000 exam: solutions

All questions are problems very similar to those considered in class or in the homeworks, except for question 5a which is bookwork.

1. (a) Question Evaluate the determinant

Answer -30

10 marks for this part

(b) Question Use Cramer's rule to solve the system

$$x + 2y + 3z = -3$$

$$x + 2y - \beta z = 4 + 3\beta$$

$$x - y + 2z = -4$$

when $\beta = -1$.

Answer If $\beta = 1$,

$$\Delta = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \\ 1 & -1 & 2 \end{vmatrix} = -6 \qquad \Delta_x = \begin{vmatrix} -3 & 2 & 3 \\ 1 & 2 & 1 \\ -4 & -1 & 2 \end{vmatrix} = -6$$

$$\Delta_y = \begin{vmatrix} 1 & -3 & 3 \\ 1 & 1 & 1 \\ 1 & -4 & 2 \end{vmatrix} = -6 \qquad \Delta_z = \begin{vmatrix} 1 & 2 & -3 \\ 1 & 2 & 1 \\ 1 & -1 & -4 \end{vmatrix} = 12$$

$$x = \Delta_x/\Delta = \underline{1}, \quad y = \Delta_y/\Delta = \underline{1}, \quad z = \Delta_z/\Delta = -2.$$

11 marks for this part

(c) Question At what β does this system have no solution? Answer If β is not fixed,

$$\Delta = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 2 & -\beta \\ 1 & -1 & 2 \end{vmatrix} = -9 - 3\beta$$

1

which is zero when $\beta = \underline{-3}$. With $\beta = -3$, the system becomes

$$\begin{aligned}
 x + 2y + 3z &= -3 \\
 x + 2y + 3z &= -5 \\
 x - y + 2z &= -4
 \end{aligned}$$
(1)

and the second equation contradicts to the first, so there are no solutions

4 marks for this part

Total for this question: 25 marks

2. (a) Question A and C are two square matrices and $det(A) \neq 0$. Show that a matrix B satisfying

$$AB = CA$$

is given by

$$\mathbf{B} = \mathbf{A}^{-1} \mathbf{C} \mathbf{A}.$$

Answer Multiplying both parts by A^{-1} from the left gives

$$\mathbf{A} \mathbf{A}^{-1} \mathbf{B} = \mathbf{A}^{-1} \mathbf{C} \mathbf{A}$$

and the left-hand side equals

$$\mathbf{A}\mathbf{A}^{-1}\mathbf{B} = (\mathbf{A}\mathbf{A}^{-1})\mathbf{B} = \mathbf{I}\mathbf{B} = \mathbf{B}$$

as required . (verification by direct substitution is also acceptable with full credit).

2 marks for this part

(b) **Question** Further, show that a matrix **D** satisfying

$$AD = C^2A$$

is given by

$$\mathbf{D} = \mathbf{B}^2$$
.

Answer The easiest way is to substitute $\mathbf{D} = \mathbf{B}^2$ into $\mathbf{AD} = \mathbf{C}^2 \mathbf{A}$ which gives

$$\mathbf{AD} = \mathbf{AB}^2 = \mathbf{AA}^{-1}\mathbf{CAA}^{-1}\mathbf{CA} = (\mathbf{AA}^{-1})\mathbf{C}(\mathbf{AA}^{-1})\mathbf{CA}$$
$$= \mathbf{ICICA} = \mathbf{C}^2\mathbf{A}$$

as required

5 marks for this part

(c) Question $Find \mathbf{B} = \mathbf{A}^{-1}\mathbf{C}\mathbf{A}$, if

$$\mathbf{A} = \begin{bmatrix} 2 & -2 & 1 \\ -1 & 1 & -1 \\ 2 & -1 & 2 \end{bmatrix}, \qquad \mathbf{C} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Answer

$$\mathbf{A}^{-1} = \begin{bmatrix} 1 & 3 & 1 \\ 0 & 2 & 1 \\ -1 & -2 & 0 \end{bmatrix} \qquad \mathbf{A}^{-1}\mathbf{C}\mathbf{A}^{-1} = \begin{bmatrix} 2 & -1 & -1 \\ -2 & 3 & -2 \\ -2 & 2 & 1 \end{bmatrix}$$

14 marks for this part

(d) Question Verify the above result by showing that AB = CAAnswer

$$\mathbf{CA} = \begin{bmatrix} 6 & -6 & 3 \\ -2 & 2 & -2 \\ 2 & -1 & 2 \end{bmatrix} = \mathbf{AB}$$

4 marks for this part

Total for this question: 25 marks

3. (a) **Question** Show that $\lambda = 1$ is one eigenvalue of the matrix

$$\mathbf{A} = \begin{bmatrix} 0 & -1 & 1 \\ -2 & 2 & 2 \\ 2 & -1 & -1 \end{bmatrix}$$

and find the remaining eigenvalues.

Answer Characteristic equation:

$$P(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -\lambda & -1 & 1 \\ -2 & 2 - \lambda & 2 \\ 2 & -1 & -1 - \lambda \end{vmatrix}$$
$$= -\lambda^3 + \lambda^2 + 4\lambda - 4 = 0$$

Substitution $\lambda = 1$ gives

$$P(1) = -1 + 1 + 4 - 4 = 0$$

so $\lambda = 1$ is an eigenvalue as required. To find the other two eigenvalues, use method of undetermined coefficients to factorise $P(\lambda)$:

$$(\lambda - 1)(A\lambda^2 + B\lambda + C) = A\lambda^3 - A\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda + C\lambda - C = \lambda^3 - \lambda^2 - 4\lambda + 4\lambda^2 + B\lambda^2 - B\lambda^2 -$$

$$A = 1 \qquad A = 1$$

$$-A + B = -1 \qquad B = 0$$

$$-B + C = -4 \qquad C = -4$$

$$-C = 4 \qquad -\text{satisfied}$$

Thus the other two eigenvalues are roots of

$$\lambda^2 - 4 = 0 \implies \lambda_{2,3} = \{2, -2\}$$

8 marks for this part

(b) **Question** Find corresponding eigenvectors.

Answer

•
$$\lambda_1 = 1$$
, $(\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{v}_1 = \begin{bmatrix} -1 & -1 & 1 \\ -2 & 1 & 2 \\ 2 & -1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ which corresponds to

$$-x - y + z = 0$$

$$-2x + y + 2z = 0$$

$$2x - y - 2z = 0$$

Assuming z = 1, from the first two equations

$$\begin{array}{rcl}
-x - y &=& -1 \\
-2x + y &=& -2
\end{array}$$

find x = 1, y = 0; substitution into the third equation confirms this is a solution; thus $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ or any its multiple.

• $\lambda_2 = 2$, $(\mathbf{A} - \lambda_2 \mathbf{I}) \mathbf{v}_2 = \begin{bmatrix} -2 & -1 & 1 \\ -2 & 0 & 2 \\ 2 & -1 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ corresponding to

•
$$\lambda_2 = 2$$
, $(\mathbf{A} - \lambda_2 \mathbf{I}) \mathbf{v}_2 = \begin{bmatrix} -2 & -1 & 1 \\ -2 & 0 & 2 \\ 2 & -1 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ corresponding to $-2y - y + z = 0$

$$-2x + 2z = 0$$

$$2x - y - 3z = 0$$

a solution to which is
$$\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$
.

•
$$\lambda_3 = -2$$
, $(\mathbf{A} - \lambda_3 \mathbf{I}) \mathbf{v}_3 = \begin{bmatrix} 2 & -1 & 1 \\ -2 & 4 & 2 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ corresponding to
$$2x - y + z = 0$$

$$-2x + 4y + 2z = 0$$

$$2x - y + z = 0$$

where the third equation coincides with the first. A solution to the system

is
$$\mathbf{v}_3 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$
.

8 marks for this part

(c) **Question** Write the system of differential equations for x(t), y(t) and z(t), corresponding to the matrix differential equation

$$d\mathbf{u}/dt = \mathbf{A}\mathbf{u}$$
 where $\mathbf{u}(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}$

Answer

$$dx/dt = -y + z$$

$$dy/dt = -2x + 2y + 2z$$

$$dz/dt = 2x - y - z$$

2 marks for this part

(d) **Question** Using the above results on the eigenvalues and eigenvectors of **A**, find the general solution of this system.

Answer The solution is

$$\mathbf{u} = C_1 e^{\lambda_1 t} \mathbf{v}_1 + C_2 e^{\lambda_2 t} \mathbf{v}_2 + C_3 e^{\lambda_3 t} \mathbf{v}_3 = C_1 e^t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + C_2 e^{2t} \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} + C_3 e^{-2t} \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

or for the components,

$$x = C_1 e^t - C_2 e^{2t} - C_3 e^{-2t}$$

$$y = C_2 e^{2t} - C_3 e^{-2t}$$

$$z = C_1 e^t - C_2 e^{2t} + C_3 e^{-2t}$$

Question Check your solution.

Answer It is sufficient to check the solution for the three cases with only one of each C_1 , C_2 , C_3 being nonzero.

For
$$C_1 = 1$$
, $C_2 = C_3 = 0$: $x = e^t$, $y = 0$, $z = e^t$,

$$\frac{dx}{dt} = e^t$$
; $-y + z = 0 + e^t = e^t$ \checkmark

$$\frac{dy}{dt} = 0$$
; $-2x + 2y + 2z = -2e^t + 0 + 2e^t = 0$ \checkmark

$$\frac{dz}{dt} = e^t$$
: $2x - y - z = 2e^t - 0 - e^t = e^t$ \checkmark

For
$$C_1 = 0$$
, $C_2 = 1$, $C_3 = 0$: $x = -e^{2t}$, $y = e^{2t}$, $z = -e^{2t}$,
$$\frac{dx}{dt} = -2e^{2t}; \qquad -y + z = -e^{2t} - e^{2t} = -2e^{2t}$$
 \checkmark
$$\frac{dy}{dt} = 2e^{2t}; \qquad -2x + 2y + 2z = 2e^{2t} + 2e^{2t} - 2e^{2t} = 2e^{2t}$$
 \checkmark
$$\frac{dz}{dt} = -2e^{2t}; \qquad 2x - y - z = -2e^{2t} - e^{2t} + e^{2t} = -2e^{2t}$$
 \checkmark

For
$$C_1 = C_2 = 0$$
, $C_3 = 1$: $x = -e^{-2t}$, $y = -e^{-2t}$, $z = e^{-2t}$,
$$dx/dt = 2e^{-2t}$$
;
$$-y + z = e^{-2t} + e^{-2t} = 2e^{-2t}$$
 \checkmark
$$dy/dt = 2e^{-2t}$$
;
$$-2x + 2y + 2z = 2e^{-2t} - 2e^{-2t} + 2e^{-2t} = 2e^{-2t}$$
 \checkmark
$$dz/dt = -2e^{-2t}$$
;
$$2x - y - z = -2e^{-2t} + e^{-2t} - e^{-2t} = -2e^{-2t}$$
 \checkmark

7 marks for this part

Total for this question: 25 marks

4. (a) Question State the linear approximation to a function f(x, y) in the neighbourhood of the point (x_0, y_0) .

Answer (Bookwork)

$$f(x,y) \approx f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

3 marks for this part

(b) **Question** The function f(x, y) is defined as

$$f(x,y) = (x-y)e^{x+y}.$$

Find the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

Answer

$$\frac{\partial f}{\partial x} = (1+x-y)e^{x+y}$$
 $\frac{\partial f}{\partial y} = (-1+x-y)e^{x+y}$

Question Hence find the linear approximation to this function in the neighbourhood of the points

- $x_0 = 0$, $y_0 = 0$;
- $x_0 = 1, y_0 = 1.$

Answer

- $f(x,y) \approx x y$;
- $f(x,y) \approx e^2(x-1) e^2(y-1) = e^2(x-y)$.

10 marks for this part

(c) Question Find the second derivatives

$$\frac{\partial^2 f}{\partial x^2}$$
 and $\frac{\partial^2 f}{\partial y^2}$

for the function f(x,y) defined above, and hence evaluate

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2},$$

stating your result in its simplest form.

Answer

$$\frac{\partial^2 f}{\partial x^2} = (2 + x - y)e^{x+y}, \quad \frac{\partial^2 f}{\partial y^2} = (-2 + x - y)e^{x+y},$$
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 2(x - y)e^{x+y}$$

12 marks for this part

Total for this question: 25 marks

5. (a) Question Briefly show how to derive the explicit finite difference scheme:

$$y_{n+1} = y_n + \frac{1}{2}\Delta_n + \frac{1}{2}hf(x_n + h, y_n + \Delta_n)$$

where

$$\Delta_n = hf(x_n, y_n)$$

for the numerical solution of the nonlinear differential equation

$$\mathrm{d}y/\mathrm{d}x = f(x,y)$$

with initial conditions

$$y(x_0) = y_0$$

(It is **not** necessary to discuss the error in this approximation).

Answer (Bookwork) The differential equation in the interval $(x_n, x_n + h)$ implies that

$$y_{n+1} - y_n = \int_{x_n}^{x_n+h} f(x, y) dx,$$

and the integral can be estimated by trapezoidal rule as

$$\approx \frac{h}{2} \left(f(x_n, y_n) + f(x_n + h, y_{n+1}) \right)$$

As this equation is implicit, it is not suitable for nonlinear equations. Let us estimate it by Euler's rule,

$$y_{n+1}^* = y_n + \Delta_n$$

where Δ_n is as defined in the question. Using y_{n+1}^* instead of y_{n+1} in the trapezoidal rule, we obtain that

$$y_{n+1} = y_n + \frac{h}{2} (f(x_n, y_n) + f(x_n + h, y_n + \Delta_n)) = y_n + \frac{1}{2} \Delta_n + \frac{h}{2} f(x_n + h, y_n + \Delta_n)$$

as required.

12 marks for this part

(b) Question Use this scheme, with a step length h=0.05, to calculate approximately y(1.2) when

$$f(x,y) = y^2 - \frac{1}{x^2}$$
 and $y(1) = 1$.

Answer

	n	x_n	y_n	$f(x_n, y_n)$	$\Delta_n = hf(x_n, y_n)$	$x_n + h$	$y_n + \Delta_n$	$\int f(x_n+h,y_n+\Delta_n)$	y_{n+1}
Γ	0	1.000	1.000000	0.000000	0.000000	1.050	1.000000	0.092971	1.002324
	1	1.050	1.002324	0.097624	0.004881	1.100	1.007205	0.188017	1.009465
	2	1.100	1.009465	0.192574	0.009629	1.150	1.019094	0.282409	1.021340
Γ	3	1.150	1.021340	0.286991	0.014350	1.200	1.035689	0.378208	1.037970
	4	1.200	1.037970						

13 marks for this part

Total for this question: 25 marks