MATH293 January 2002 exam: solutions

1. (a) Question Find the general solution of the differential equation:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 0.$$

Answer The characteristic equation is

$$\lambda^2 + 3\lambda + 2 = 0,$$

and its roots are

$$\lambda_{1,2} = \{-1, -2\}$$

(positive discriminant, two real roots). Hence the basis solutions of this homogeneous equation are

$$y_1 = e^{-x}, \qquad y_2 = e^{-2x},$$

and the general solution is

$$y = C_1 e^{-x} + C_2 e^{-2x}.$$

10 marks for this part

(b) Question Using the method of undetermined coefficients, find a particular integral (particular solution) of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 5\cos(x).$$

Hence write down the general solution of the equation.

Answer The free term here is a trigonometric function, the trial solution to be chosen as a combination of trigonometric functions with the same argument,

$$y_p = A\cos(x) + B\sin(x)$$
.

Choosing $y = y_p$, calculating y' and y'' and substituting into the nonhomogeneous equation, we obtain

$$y' = -A\sin(x) + B\cos(x),$$

$$y'' = -A\cos(x) - B\sin(x),$$

$$y'' + 3y' + 2y = -A\cos(x) - B\sin(x) - 3A\sin(x) + 3B\cos(x) + 2A\cos(x) + 2B\sin(x)$$

$$= (A + 3B)\cos(x) + (B - 3A)\sin(x) = 5\cos(x)$$

Equating the coefficients at the same functions of x leads to

$$[\cos(x)]:$$
 $A + 3B = 5,$
 $[\sin(x)]:$ $B - 3A = 0,$

The solution of this system is

$$A = 1/2, \quad B = 3/2,$$

and so the particular solution to the nonhomogeneous equation is

$$y_p = \frac{1}{2}\cos(x) + \frac{3}{2}\sin(x).$$

The general solution of the nonhomogeneous equation is the sum of PSNE and GSHE, that is,

$$y = \frac{1}{2}\cos(x) + \frac{3}{2}\sin(x) + C_1e^{-x} + C_2e^{-2x}.$$

12 marks for this part

(c) **Question** Suggest the form of the trial solution in the method of undetermined coefficients, for the equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 5\cos(x)e^{-x}.$$

(You don't have to do the calculations here, i.e. you should leave the coefficients in the trial solution undetermined.)

Answer

$$y_p = (A\cos(x) + B\sin(x))e^{-x}.$$

3 marks for this part

Total for this question: 25 marks

2. (a) Question The function f(x) is periodic, with period p=2L=1, and has the Fourier series expansion

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(2\pi nx) + b_n \sin(2\pi nx)).$$

State the formulae for the Fourier coefficients, a_0 , a_n , $n=1,2,\ldots$ and b_n , $n=1,2,\ldots$

Answer

$$a_0 = \int_{-1/2}^{1/2} f(x) \, \mathrm{d}x,$$

$$a_n = 2 \int_{-1/2}^{1/2} f(x) \cos(2\pi nx) dx, \qquad n = 1, 2 \dots,$$

$$b_n = 2 \int_{-1/2}^{1/2} f(x) \sin(2\pi nx) dx, \qquad n = 1, 2...$$

Question Draw the graph of f(x) for -1.5 < x < 1.5 when

$$f(x) = \begin{cases} 1 + 2x, & -0.5 < x < 0, \\ 1 - 2x, & 0 < x < 0.5, \end{cases}$$

and f(x) is periodic with period p = 2L = 1.

Answer

10 marks for this part

(b) Question When f(x) is defined as above, briefly explain why, for all integers n, $\int_{-1/2}^{1/2} f(x) \sin(2\pi nx) dx = 0,$

Answer

f(x) is an even function, $\sin(2\pi nx)$ is an odd function, and $\cos(2\pi nx)$ is an even function. Product of an odd function $(\sin(2\pi nx))$ by an even function (f(x)) is always an odd function, and an integral of an odd function over a symmetric interval (-1,1) is always zero, this is why for all integer n,

$$b_n = 2 \int_{-1/2}^{1/2} f(x) \sin(2\pi nx) dx = 0.$$

Question and why

$$\int_{-1/2}^{1/2} f(x) \cos(2\pi nx) dx = 2 \int_{0}^{1/2} f(x) \cos(2\pi nx) dx.$$

Answer

A product of an even function (f(x)) and another even function $(\cos(2\pi nx))$ is also an even function. An integral of an even function over a symmetric interval (-1,1) is always double the integral over a half of that interval (0,1), which is why

$$\int_{-1/2}^{1/2} f(x) \cos(2\pi nx) dx = 2 \int_{0}^{1/2} f(x) \cos(2\pi nx) dx = 2 \int_{0}^{1/2} x \cos(2\pi nx) dx = 2I_n.$$

Question Show that

$$I_n = \int_{0}^{1/2} (1 - 2x) \cos(2\pi nx) dx = \frac{1}{n\pi} \int_{0}^{1/2} \sin(2\pi nx) dx, \qquad n \neq 0,$$

and hence evaluate this integral.

Answer Calculating the integral I_n by parts gives, if $n \neq 0$,

$$I_n = \int_0^{1/2} (1 - 2x) \cos(2\pi nx) dx = \frac{1}{2\pi n} \int_0^{1/2} (1 - 2x) \frac{d}{dx} \sin(2\pi nx) dx$$
$$= \frac{1}{2\pi n} \left((1 - 2x) \sin(2\pi nx)|_0^{1/2} - \int_0^{1/2} \sin(2\pi nx) \frac{d}{dx} (1 - 2x) dx \right) = \frac{1}{n\pi} \left(\int_0^{1/2} \sin(2\pi nx) dx \right),$$

as requested: substitution gives zero, as $\sin(0) = \sin(n\pi) = 0$. By integrating further, we obtain

$$= \frac{1}{n\pi} \int_{0}^{1/2} \sin(2\pi nx) \, \mathrm{d}x = \frac{1}{2(\pi n)^2} \int_{0}^{1/2} \sin(2\pi nx) \, \mathrm{d}((2\pi nx)) = -\frac{1}{2(\pi n)^2} \cos(2\pi nx) \big|_{0}^{1/2}$$

$$= \frac{1}{2(\pi n)^2} (1 - \cos(n\pi)) = \begin{cases} 0, & n \text{ is even,} \\ \frac{1}{n^2 \pi^2}, & n \text{ is odd,} \end{cases}$$

and therefore ...

Question Calculate a_0 and a_n and hence find the Fourier series of the function f(x) defined above.

Answer

$$a_n = 2 \int_{-1/2}^{1/2} f(x) \cos(2\pi nx) \, \mathrm{d}x = 4 \int_{0}^{1/2} f(x) \cos(2\pi nx) \, \mathrm{d}x = 4I_n = \begin{cases} 0, & n \text{ is even,} \\ \frac{4}{n^2 \pi^2}, & n \text{ is odd.} \end{cases}$$

The constant term is:

$$a_0 = \int_{-1/2}^{1/2} f(x) dx = 2 \int_{0}^{1/2} (1 - 2x) dx = \frac{1}{2}.$$

Thus the Fourier series is

$$f(x) = \frac{1}{2} + \frac{4}{\pi^2} \left(\cos(2\pi x) + \frac{1}{3^2} \cos(6\pi x) + \frac{1}{5^2} \cos(10\pi x) + \ldots \right)$$

Question By putting x = 0 in your Fourier series, sum the series

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = 1 + \frac{1}{9} + \frac{1}{25} + \frac{1}{49} + \dots$$

Answer Substituting x = 0 into this Fourier seris, we obtain

$$f(0) = 1 = \frac{1}{2} + \frac{4}{\pi^2} \left(\cos(0) + \frac{1}{3^2} \cos(0) + \frac{1}{5^2} \cos(0) + \dots \right)$$
$$= \frac{1}{2} + \frac{4}{\pi^2} \left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots \right) = \frac{1}{2} + \frac{4}{\pi^2} S,$$

where

$$S = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

— is the numerical series to be summed. Since $\frac{1}{2} + \frac{4}{\pi^2}S = f(0) = 1$, we find that

$$S = \frac{1}{2} \; \frac{\pi^2}{4} = \frac{\pi^2}{8}.$$

15 marks for this part

Total for this question: 25 marks

3. (a) Question The Fourier transform $\tilde{f}(w)$ of a function f(t) is defined by

$$\tilde{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-iwt} dt.$$

Give the formula, by which f(t) can be found if its Fourier transform $\tilde{f}(w)$ is known.

Answer

$$f(t) = \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{\infty} \tilde{f}(w) e^{iwt} \, \mathrm{d}w.$$

General structure, correct coefficient, correct limits, correct sign in the exponent.

6 marks for this part

(b) **Question** Show that if f(t) is given by

$$f(t) = \begin{cases} 0, & t \le -1/2, \\ 1+2t, & -1/2 < t < 0, \\ 1-2t, & 0 < t < 1/2, \\ 0, & t > 1/2, \end{cases}$$

its Fourier transform is

$$\tilde{f}(w) = \frac{4}{\sqrt{2\pi}} \frac{1 - \cos(w/2)}{w^2}$$

Answer For the given f(t), the Fourier transform is

$$\tilde{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-iwt} dt$$

$$= \frac{1}{\sqrt{2\pi}} \left(\int_{-1/2}^{0} (1+2t)e^{-iwt} dt + \int_{0}^{1/2} (1-2t)e^{-iwt} dt \right)$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{1/2} (1-2t)\cos(wt) dt$$

(this step is optional, straightforward calculation of the two integrals fully acceptable)

$$= \frac{2}{\sqrt{2\pi}} \left(\frac{1}{w} \sin(wt) (1 - 2t) + \frac{2}{w} \int \sin(wt) dt \right) \Big|_{0}^{1/2}$$

$$= \frac{2}{\sqrt{2\pi}} \left(\frac{1}{w} \sin(wt) (1 - 2t) - \frac{2}{w^2} \cos(wt) \right) \Big|_{0}^{1/2}$$

$$= \frac{2}{\sqrt{2\pi}} \left[\left(\frac{1}{w} \sin(w/2) \cdot 0 - \frac{2}{w^2} \cos(w/2) \right) - \left(\frac{1}{w} \sin(0) \cdot 1 - \frac{2}{w^2} \cos(0) \right) \right]$$

$$= \frac{4}{\sqrt{2\pi}} \frac{1 - \cos(w/2)}{w^2}$$

as requested.

15 marks for this part

(c) Question Using the result of parts (a) and (b), write down the integral which represents f(t) defined as above.

Answer Inverse F.t.:

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \tilde{f}(w)e^{iwt} dw = \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{1 - \cos(w/2)}{w^2} e^{iwt} dw$$

Question

By putting t = 0 in this result and substituting x = w/2, evaluate

$$\int\limits_{-\infty}^{\infty} \frac{1 - \cos(x)}{x^2} \, \mathrm{d}x.$$

Answer For t = 0,

$$f(0) = \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{1 - \cos(w/2)}{w^2} e^{iw \cdot 0} dw = \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{1 - \cos(w/2)}{w^2} dw$$

$$= \frac{2}{\pi} \int_{0}^{\infty} \frac{1 - \cos(x)}{(2x)^2} 2 dx = \frac{1}{\pi} \int_{0}^{\infty} \frac{1 - \cos(x)}{x^2} dx = f(0) = 1$$

hence

$$\int_{-\infty}^{\infty} \frac{1 - \cos(x)}{x^2} \, \mathrm{d}x = \pi$$

4 marks for this part

Total for this question: 25 marks

4. (a) Question Find the function of t whose Laplace transform is:

$$\frac{1}{(s+1)(s+4)}$$

Answer By cover-up rule,

$$F(s) = \frac{1}{(s+1)(s+4)} = \frac{1}{(-1)+4} \cdot \frac{1}{s+1} + \frac{1}{(-4)+1} \cdot \frac{1}{s+4}$$
$$= \frac{1}{3} \frac{1}{s+1} - \frac{1}{3} \frac{1}{s+4}$$

(any other valid method equally acceptable)

$$f(t) = \mathcal{L}^{-1}(F(s)) = \boxed{\frac{1}{3} (e^{-t} - e^{-4t})}$$

4 marks for this part

(b) **Question** Find the function of t whose Laplace transform is:

$$\frac{s+7}{s^2+6s+13}$$

Answer

$$F(s) = \frac{s+7}{s^2+6s+13} = \frac{s+7}{s^2+6s+9+4} = \frac{(s+3)+4}{(s+3)^2+2^2}$$
$$= \frac{(s+3)}{(s+3)^2+2^2} + 2\frac{2}{(s+3)^2+2^2}$$
$$f(t) = \mathcal{L}^{-1} \frac{(s+3)}{(s+3)^2+2^2} + 2\mathcal{L}^{-1} \frac{2}{(s+3)^2+2^2} = e^{-3t}\cos(2t) + 2e^{-3t}\sin(2t)$$

8 marks for this part

(c) Question Find, using the Laplace Transform, the solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 9y = 16\cos(5t),$$

which satisfies initial conditions

$$y(0) = 0$$
 and $\frac{\mathrm{d}y}{\mathrm{d}t}(0) = 3$.

Answer Let $\mathcal{L}y = Y$, then with account of the initial conditions,

$$\mathcal{L}y'' = s^{2}Y - sy(0) - y'(0) = s^{2}Y - 3.$$

and the subsidiary equation is

$$s^2Y - 3 + 9Y = \frac{16s}{s^2 + 25}$$

Its solution is:

$$Y = \frac{16s}{(s^2 + 9)(s^2 + 25)} + \frac{3}{s^2 + 9}$$
$$= \frac{s}{s^2 + 9} - \frac{s}{s^2 + 25} + \frac{3}{s^2 + 9}.$$

Thus

$$y = \mathcal{L}^{-1}[Y] = -\cos(5t) + \cos(3t) + \sin(3t).$$

Question Check your solution by substituting y(t) into the differential equation and initial conditions.

Answer

$$y(0) = -1 + 1 + 0 = 0 \quad \checkmark$$

$$y'(t) = 5\sin(5t) - 3\sin(3t) + 3\cos(3t),$$

$$y'(0) = 5 \cdot 0 - 3 \cdot 0 + 3 \cdot 1 = 3 \quad \checkmark$$

$$y''(t) = 25\cos(5t) - 9\cos(3t) - 9\sin(3t),$$

$$y'' + 9y = 25\cos(5t) - 9\cos(3t) - 9\sin(3t) + 9(-\cos(5t) + \cos(3t) + \sin(3t))$$

$$= (25 - 9)\cos(5t) + (-9 + 9)\cos(3t) + (-9 + 9)\sin(3t) = 16\cos(5t) \quad \checkmark$$

13 marks for this part

Total for this question: 25 marks

5. Question The functions x(t) and y(t) satisfy the differential equations

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 16x - 10y$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 26x - 16y$$

and the initial conditions

$$x(0) = 2$$
 and $y(0) = 3$.

(a) Question Show that X and Y, the Laplace transforms of x(t) and y(t), are given by

$$X(s) = \frac{2s+2}{s^2+4}, \qquad Y(s) = \frac{3s+4}{s^2+4}.$$

Answer Let $X = \mathcal{L}x$, $Y = \mathcal{L}y$. The subsidiary system is

$$sX - 2 = 16X - 10Y,$$

 $sY - 3 = 26X - 16Y.$

which has the solutions as requested

$$X(s) = \frac{2s+2}{s^2+4},$$

$$Y(s) = \frac{3s+4}{s^2+4}$$

(any valid method acceptable)

Question Hence find x(t) and y(t).

Answer

$$x(t) = 2\mathcal{L}^{-1} \left[\frac{s}{s^2 + 4} \right] + \mathcal{L}^{-1} \left[\frac{2}{s^2 + 4} \right]$$
$$= \frac{2\cos(2t) + \sin(2t)}{s^2 + 4}$$
$$y(t) = 3\mathcal{L}^{-1} \left[\frac{s}{s^2 + 4} \right] + 2\mathcal{L}^{-1} \left[\frac{2}{s^2 + 4} \right]$$
$$= 3\cos(2t) + 2\sin(2t)$$

16 marks for this part

(b) Question Verify your solution by substituting x(t), y(t) into the differential equations and initial conditions.

Answer attempted =

$$x(0) = 2\cos(0) + \sin(0) = 2, \quad \checkmark$$

$$y(0) = 3\cos(0) + 4\sin(0) = 3, \quad \checkmark$$

$$x' = -4\sin(2t) + 2\cos(2t);$$

$$16x - 10y = 32\cos(2t) + 16\sin(2t) - 30\cos(2t) - 20\sin(2t)) = 2\cos(2t) - 4\sin(2t) = x' \quad \checkmark$$

$$y' = -6\sin(2t) + 4\cos(2t);$$

$$26x - 16y = 52\cos(2t) + 26\sin(2t) - 48\cos(2t) - 32\sin(2t) = 4\cos(2t) - 6\sin(2t) = y' \quad \checkmark$$

9 marks for this part

Total for this question: 25 marks