THE UNIVERSITY

of LIVERPOOL

SECTION A

Define a unit in a ring R with identity, and its multiplicative inverse.

Decide whether the following are units in the stated rings, giving reasons. If they are units, find their multiplicative inverse.

- (a) in $R = \mathbf{Z}[\sqrt{2}], \quad a = \sqrt{2} 1$
- (b) in $R = \mathbf{Z}[\sqrt{2}], \quad a = (\sqrt{2} + 1)^{20}$
- (c) in $R = \mathbf{Z}_{12}$, a = 9
- (d) in $R = \mathbf{Z}[i]$, a = 3 + i.

[8 marks]

2. Find a greatest common divisor c(x) of the polynomials $a(x) = x^4 + x + 2$ and $b(x) = x^2 + x + 3$ in $\mathbb{Z}_5[x]$. Find also $d(x), e(x), m(x), n(x) \in \mathbb{Z}_5[x]$ with

$$c(x) = a(x)m(x) + b(x)n(x),$$
 $a(x) = d(x)c(x),$ $b(x) = e(x)c(x).$

[8 marks]

Show that

$$a(x) = x^3 - 2x^2 + x + 3$$

is irreducible in $\mathbb{Z}[x]$. Decide whether or not it is irreducible in $\mathbb{Q}[x]$. Show that it is reducible in $\mathbb{Z}_5[x]$. Factorise it as a product of primes in $\mathbb{Z}_5[x]$.

- **4.** In the projective plane $P^2(\mathbf{Z}_3)$ find:
 - (a) all points on the projective line 2X + Y + Z = 0;
 - (b) all projective lines through the point [2:1:1].

[8 marks]

Write down the multiplication table of the ring $\mathbb{Z}_2[x]/J$ in the following cases:

(a)
$$J = (x^2 + 1)\mathbf{Z}_2[x]$$

(b)
$$J = (x^2 + x + 1)\mathbf{Z}_2[x].$$

[8 marks]

THE UNIVERSITY of LIVERPOOL

6. Consider the linear code C in \mathbb{Z}_2^7 with check matrix

State a property for a check matrix which ensures that the corresponding code corrects one error; deduce that the code C given here does correct one error.

Determine which of the following words are in the code C; assuming at most one error, correct those which are not in C:

- (a) 1001001,
- (b) 0010001.

[8 marks]

SECTION B

7. Let R be a commutative ring.

Give the definitions of subring and ideal of R.

Determine which of the following subsets are subrings of the given rings; also determine which of the following subsets are ideals of the given rings.

- (a) $S = \mathbf{Z}$ in $R = \mathbf{Z}[i]$;
- (b) $S = \{3m + 3ni \mid m, n \in \mathbf{Z}\}$ in $R = \mathbf{Z}[i];$
- (c) $S = \{2m + ni \mid m, n \in \mathbf{Z}\}$ in $R = \mathbf{Z}[i]$.

Let I be an ideal of $\mathbf{Z}[i]$, and let z=a+ib be a nonzero element of I whose Euclidean valuation $|z|^2=a^2+b^2$ is minimal on I. Show that any $w\in I$ must be of the type w=zw', for some element $w'\in\mathbf{Z}[i]$.

[15 marks]

8. Give the definition of ring homomorphism.

Consider $\varphi : \mathbf{R}[x] \to \mathbf{C}$ given by:

$$\varphi(p(x)) = p(i) \quad \forall p(x) \in \mathbf{R}[x].$$

- (a) Show that φ is a ring homomorphism, and it is surjective.
- (b) Find a polynomial g(x) such that $Ker\varphi = g(x)\mathbf{R}[x]$.

[15 marks]

THE UNIVERSITY of LIVERPOOL

9.

- a) Let \mathbb{Z}_5^* denote the multiplicative group of \mathbb{Z}_5 . Give the orders of all 4 elements of \mathbb{Z}_{5}^{*} .
- b) Show that $x^2 + 2$ is irreducible in $\mathbb{Z}_5[x]$. Now write $J = (x^2 + 2)\mathbf{Z}_5[x]$. Let $F = \mathbf{Z}_5[x]/J$ (which is a field) and let F^* be the multiplicative group of F.
- Give the number of elements in F^* and the possible orders of elements of F^* .
 - Find the orders in F^* of

(i) J + 2

(ii) J + (x+2) (iii) J + (2x+4).

[15 marks]

10.

- (a) A panel of 3 persons is testing 9 ice cream flavours. The testing is carried out in 4 sessions. In each session, each person tries 3 flavours. Each pair of flavours is tested by the same person in exactly one session. By considering lines in \mathbb{Z}_3^2 , or otherwise, explain why a schedule is possible, and write down one.
- (b) Would a schedule be possible for 16 ice cream flavours, a panel of 4 people testing them during 5 sessions? Give reasons (no need to write down the complete schedule).

[15 marks]

11.

- (a) Decompose $x^7 + 1$ as product of prime factors in $\mathbb{Z}_2[x]$.
- (b) Write down the generator for one of the two cyclic codes of length 7 and dimension 4. Also work out the check matrix for the code, and a linear basis. Can such a code correct one error? Justify your answer.

[15 marks]