Solutions for supplementary exam

- 1. A unit is an element r of a ring R such that there is $s \in R$ with rs = 1. That s is then called the multiplicative inverse. [lecture] (1 mark)
 - a. Not a unit, because the only units in R[x] when R is an integral domain are constant polynomials. [lecture] (2 marks)
 - b. Unit, with multiplicative inverse 2x + 1. [homework] (2 marks)
 - c. Unit, with inverse 2. [similar to lecture and homework] (2 marks)
 - d. Unit, with inverse 7. [similar to lecture and homework] (2 marks)
- 2a. We check that the values of this polynomial at 0, 1, 2 are 1, 1, 0 respectively, so f(x) is a multiple of x-2=x+1. Division gives $f(x)=(x+1)(x^2+1)$, and now x^2+1 is checked to have no roots, so it is irreducible and this is the factorization. [similar to lecture and homework] (3 marks)
- 2b. Again we check that the values of this polynomial at $0, 1, 2, 3, 4 \in \mathbb{Z}/5$ are 1, 2, 2, 2, 3, so there are no roots. A polynomial of degree 3 over a field with no roots is irreducible. [similar to lecture and homework] (3 marks)
- 2c. This polynomial is irreducible over **Z**/5 and its leading coefficient is not a multiple of 5. It is therefore irreducible over **Z**. [similar to lecture and homework] (3 marks)
- 3i. The single element sought is $gcd(x^3 + x^2, x^4 + x^3 + x^2) = gcd(x^3 + x^2, x^2) = x^2$. [similar to lecture and homework] (5 marks)
- 3ii. The sought-after multiplication table:

[similar to lecture and homework] (4 marks)

- 4i. Let the line be ax + by + cz = 0. Then we have a + 2c = 2a + b + 2c = 0, and eliminating a from the second equation we get b + c = 0, that is, a = c and b = -c. So the line is 2x + y + 2z = 0 or x + 2y + z = 0 (either form is acceptable.) [similar to lecture and homework] (4 marks)
- 4ii. Let's take the form x + 2y + z = 0. With z = 1 we get x + 2y = 2, and putting successively y = 0, 1, 2 we get the points [2:0:1], [0:1:1], [1:2:1]. With z = 0 we get x + 2y = 0. We do not get a point with y = 0, and y = 1 give the point [1:1:0]—four points in all. (Other forms of the answer are acceptable.) [similar to lecture and homework] (5 marks)
- 5i. A t-(v, k, r)-design is a set of subsets of size k of a v-element set such that every subset of size t appears exactly r times. [lecture] (3 marks)
- 5ii. The sets $\{1,2,3,4\}$, $\{1,2,5,6\}$, $\{3,4,5,6\}$ constitute such a design. (Any of the numerous correct answers is acceptable.) [similar to lecture and homework] (3 marks)
- 5iii. No, because $\{1,2\}$ is a subset of two of these; $\{1,3\}$, of only one (or as appropriate; it's also acceptable to cite the theorem that for a 2-design we need to have $r\binom{v}{2}/\binom{k}{2}$ sets). [similar to lecture and homework] (3 marks)
- 6i. The factorization is $(x+1)(x^3+x+1)(x^3+x^2+1)$. [lecture] (5 marks)
- 6ii. There is no such code, because its generator would have to be a degree-2 factor of $x^7 + 1$ over $\mathbb{Z}/2$, and the above shows that no such exists. [similar to lecture] (5 marks)
- 7. A subring of a ring R is a subset that contains 1 and is closed under negation, addition, and multiplication. [Minor variations are possible.] [lecture] (3 marks)
 - a. Not a subring, because it doesn't contain 1. [lecture] (3 marks)
 - b. Not a subring, because it isn't closed under negation. [lecture] (3 marks)
 - c. Yes, this is a subring. $1 = 1 + 0\sqrt{-3} \in S$, and if $t = a + b\sqrt{-3}$ and $u = c + d\sqrt{-3}$ are in S then so are $t + u = a + c + (b + d)\sqrt{-3}$ and $tu = ac 3bd + (ad + bc)\sqrt{-3}$. [similar to lecture] (3 marks)
 - d. Yes, this is a subring. $1 \in S$, and if $f = a_0 + a_3 x^3 + \ldots + a_m x^m$ and $g = b_0 + b_3 x^3 + \ldots + b_n x^n$ are in S then so are

$$f + g = (a_0 + b_0) + (a_3 + b_3)x^3 + \dots$$

and

$$fg = (a_0b_0) + (a_0b_3 + a_3b_0)x^3 + (a_0b_4 + a_4b_0)x^4 + \ldots + a_mb_nx^{m+n}$$
.

[similar to lecture] (3 marks)

- 8. A homomorphism of rings is a function $\phi: R \mapsto S$ from one ring to another such that $\phi(1) = \phi(1)$, $\phi(a+b) = \phi(a) + \phi(b)$, and $\phi(ab) = \phi(a)\phi(b)$. [lecture] (3 marks)
 - i. That $\phi(1) = 1$ is clear (but must be stated). For the other two, let $f = \sum a_j x^j$ and $g = \sum b_k x^k$ be polynomials. Then $f(i) + g(i) = \sum a_j i^j + \sum b_k i^k = \sum (a_l + b_l) i^l = (f + g)(i)$ and $f(i)g(i) = (\sum a_j i^j)(\sum b_k i^k) = \sum \sum a_{l-m} b_m i^m = fg(i)$. [lecture] (4 marks)

 ii. By definition we would have $\psi(1) = 1$. Since $\psi(-1 + 1) = \psi(-1) + \psi(1)$ we get $\psi(-1) = -1$ Let
 - ii. By definition we would have $\psi(1) = 1$. Since $\psi(-1+1) = \psi(-1) + \psi(1)$ we get $\psi(-1) = -1$ Let $f = \psi(i)$. Then $f^2 = -1$; in particular, f(-f) = 1, and f is a unit. So f must be a constant polynomial. But there are no constant real polynomials with square -1. [similar to homework] (8 marks)
- 9i. No. If n is not a prime power, there is no field of n elements. [lecture] (3 marks)
- 9ii. The intended condition is that R should be a field and f an irreducible polynomial. [lecture] (4 marks) $\mathbb{Z}/3$ is a field and $x^3 + 2x + 1$ (among others) is an irreducible polynomial of degree 3 over it, so $\mathbb{Z}/5[x]/(x^3 + 2x + 1)$ is a field. Now, according to the division algorithm for polynomials over a field, every element of this ring is represented by a unique polynomial of degree at most 2, and there are 3 choices for the coefficients of x^2 , x, and 1, making $3^3 = 27$ in all. [similar to lecture] (8 marks)
- 10i. The subsets 123,456,789,147,258,369,159,267,348,168,249,357 of $\{1,2,3,4,5,6,7,8,9\}$ constitute a 2-(9,3,1)-design. This comes from considering lines in an affine plane over the field $\mathbb{Z}/3$. [lecture] (6 marks)
- 10ii. The polynomial $x^2 + x + 1$ is irreducible over $\mathbb{Z}/2$, so there is a field \mathbb{F}_4 of order 4. The projective plane over \mathbb{F}_4 has order $4^2 + 4 + 1 = 21$, and every nonzero linear equation in three variables has 16 solutions, giving (16-1)/(4-1) = 5 points. Every two points lie on a unique line, so the set of lines in $\mathbb{P}^2(\mathbb{F}_4)$ is a 2-(21,5,1)-design. [similar to lecture] (9 marks)
- 11i. If the code corrects s errors, then any two words at Hamming distance at most s from codewords are different, so the total number of words is greater than or equal to the number of codewords multiplied by the number of words at distance at most s from a given word. On the other hand, there are $\binom{n}{i}(q-1)^i$ words at distance i from a given word $\binom{n}{i}$ ways to choose the places in which they differ and $(q-1)^i$ ways to choose the symbols in those places. So we get

$$q^k \sum_{i=0}^s \binom{n}{i} (q-1)^i \le q^n,$$

and a trivial rearrangement produces the formula asserted. [lecture] (7 marks)

- 11ii. In particular, with n = 9 and s = 1 we get $1 + 9 \le 2^{9-k}$, so $9 k \ge 4$ and $k \le 5$. [similar to homework] (3 marks)
- 11iii. A check matrix in which no column is a multiple of any other gives a code that corrects 1 error. In particular, we need a 9 by 4 matrix with entries in $\mathbb{Z}/2$ and all its columns nonzero and different, such as

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

(Among many other equally acceptable possibilities.) [similar to homework] (5 marks)