MATH247 September 2002 Solutions.

Section A.

1. $a \in R$ is a *unit* if there exists $b \in R$ with ab = ba = 1.

[2 marks]

b is then the multiplicative inverse of a. (It is unique.)

[2 marks]

a) $\mathbf{Z}_3 = \{0, 1, 2\}$. $1 \times 1 = 2 \times 2 = 1$ (and $0 \times a = 0$ for all $a \in \mathbf{Z}_3$). So 1 and 2 are the units in \mathbf{Z}_3 .

[2 marks.]

b) $\mathbf{Z}_4 = \{0,1,2,3\}$ $1 \times 1 = 3 \times 3 = 1$ and $2 \times 2 = 0$. No element can be both a unit and a zero divisor. So 1 and 3 are the units in \mathbf{Z}_4 .

$$(a_n x^n + \cdots)(b_m x^m + \cdots) = a_n b_m x^{n+m} + \cdots$$

So the only way in which to get product 1 is if both polynomials are constant. So the units are all the constant polynomials a_0 with $a_0 \neq 0$, with inverse $1/a_0$.

[3 marks.]

$$[10 = 2 + 1 + 2 + 2 + 3 \text{ marks.}]$$

The first part is standard theory, the rest standard homework problems.

2.
$$a(x) = x^4 + x^2 + 1$$
, $b(x) = x^3 + 1 \in \mathbf{Z}_2[x]$. We have
$$x^4 + x^2 + 1 = x(x^3 + 1) + x^2 + x + 1 \tag{1}$$

by inspection or long division

[2 marks] and

$$x^{3} + 1 = (x+1)(x^{2} + x + 1)$$
(2)

again by inspection or long division

[2 marks]

So
$$c(x) = x^2 + x + 1$$
 is the g.c.d. of $a(x)$ and $b(x)$

[1 mark] and d(x) = x + 1 from (2), while from (1) and (2) (or alternatively by long division)

$$x^4 + x^2 + 1 = x(x+1)(x^2 + x + 1) + x^2 + x + 1 = (x^2 + x + 1)(x^2 + x + 1)$$

and $e(x) = x^2 + x + 1$.

[2 marks]

From (1),

$$x^{2} + x + 1 = x^{4} + x^{2} + 1 + x(x^{3} + 1).$$

So m(x) = 1 and n(x) = x.

[1 mark]

$$[8 = 2 + 2 + 1 + 2 + 1 \text{ marks}]$$

Standard homework exercise.

3. $x^4 + 1$ has no zeros in **Z** (or **R**).

[1 mark.]

So if it factorizes in $\mathbf{R}[x]$ or $\mathbf{Z}[x]$, it must have a factorization as a product of two degree two polynomials, and we are allowed to assume this is of the form

$$(x^2 + ax + b)(x^2 - ax + b).$$

(This actually follows from considering the coefficients of the x^3 term and then the x term, since we must have $a \neq 0$.) Then $b^2 = 1$, giving $b = \pm 1$. Then $a^2 = 2b = \pm 2$, giving no real a unless b = 1, in which case $a = \sqrt{2}$. Both factors have no real zeros because $(\sqrt{2})^2 - 4 < 0$, and hence they are irreducible in $\mathbf{R}[x]$.

[5 marks]

So there is a factorization in $\mathbf{R}[x]$

$$x^4 + 1 = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)$$

but $x^4 + 1$ is irreducible in $\mathbf{Z}[x]$ because $\sqrt{2} \notin \mathbf{Z}$.

[2 marks]

In $\mathbf{Z}_2[x]$ we have

$$x^4 + 1 = (x+1)^4,$$

which is the factorization into irreducibles in $\mathbb{Z}_2[x]$.

[3 marks]

$$[11 = 1 + 5 + 2 + 3 \text{ marks}]$$

Standard homework exercise.

4a)
$$x + y + 2 = 0 \Leftrightarrow y = 1 + 2x \text{ (in } \mathbf{Z}_3).$$

So taking x = 0, 1, 2 gives the points (0,1), (1,0), (2,2).

b)

$$x + y + 2 = 0$$
, $2x + y + 1 = 0$.

Subtracting the first equation from the second gives x - 1 = 0, that is, x = 1, so that from the first equation y = 1 + 2x = 0. So (1,0) is the point of intersection. [2 marks.]

c) The lines through (1,0) are of the form

$$a(x-1) + by = 0$$

for $(a, b) \neq (0, 0)$. To avoid duplication of lines, we take b = 1 or b = 0 and a = 1.

$$b = 1$$
 gives $y = 0$, $x + y + 2 = 0$, $2x + y + 1 = 0$.

b = 0 and a = 1 gives x + 2 = 0.

[3 marks]

[7 = 2 + 2 + 3 marks.]

[Standard homework exercise.]

5a) 6 does not divide 11×3 . So there is no 1-design with these parameters.

[1 mark]

b) $6 \mid 10 \times 3$ and $3 < \binom{9}{5}$. So there is a 1-design with these parameters.

[2 marks]

c) The set of lines in $P^2(\mathbf{Z}_2)$ is such a 2-design: $P^2(\mathbf{Z}_2)$ has 7 points, each line has 3 points and any two lines intersect in 1 point.

[3 marks]

d) There is no 2 design with these parameters (v, k, r) because 2 = k - 1 does not divide (v - 1)r = 7.

[3 marks]

9 = 1 + 2 + 3 + 3 marks

Standard homework exercises.

6. All the columns of H are distinct and not identically 0. So H corrects one error [2 marks]

The weight has to be 3

[1 mark.]

a)

$$\begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}.$$

This is not a code word. Since the third column of the check matrix is obtained, the third letter must be wrong and the corrected word is 1100110.

[4 marks]

b)

$$\begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

So this is a codeword

[3 marks.]

10 = 2 + 1 + 4 + 3 marks.]

Standard homework exercise, with a bit of standard theory at the start.

Section B.

7(i) $S \subset R$ is a subring of R if $S \neq \phi$ and $x, y \in S \implies x - y \in S, xy \in S$.

[2 marks]

 $S \subset R$ is an *ideal* of R if $S \neq \phi$ and $x, y \in S \Rightarrow x - y \in S, x \in S, y \in R \Rightarrow xy \in S$.

(i)a) $(2+i) = -1 + 2i \notin S$, although 2+i, $i \in S$. So S is not a subring, and hence not an ideal

[2 marks]

(i)b)
$$(m_1 + 2n_1i) - (m_2 + 2n_2i) = (m_1 - m_2) + 2(n_1 - n_2)i.$$
$$(m_1 + 2n_1i)(m_2 + 2n_2i) = (m_1m_2 - 4n_1n_2) + 2(n_1m_2 + n_2m_1)i.$$

for all integers m_i , n_i , i = 1, 2. So S is a subring.

[3 marks]

But S is not an ideal because $1 \in J$ but $i.1 = i \notin J$.

[1 mark]

(ii) Let $b \neq 0$, $b \in J$ with v(b) minimal. Take any $a \in J$. Then a = qb + r for some $a, r \in R$ with r = 0 or v(r) < v(b). We have $r = a - qb \in J$ Since v(b) is minimal for $b \neq 0$, we must have r = 0, and hence a = qb. So $J \subset bR$. But $bR \subset J$. So J = bR.

[5 marks.]

$$[15 = 2 + 2 + 2 + 3 + 1 + 5 \text{ marks}]$$

- (i) is standard theory for the definitions and similar to homework exercises for a) and b), while (ii) is standard theory, with hints provided.
- 8(i). For $f(x) = x^3 + 2x + 1$, we have f(0) = 1, f(1) = 1, f(2) = 13 = 1. So f has no zeros in \mathbb{Z}_3 , hence no degree one factors, and is irreducible

[2 marks]

$$f(x+1) = (x+1)^3 + 2(x+1) + 1 = x^3 + 2x + (3x^2 + 3x) + 1 + 2 + 1 = f(x).$$

[2 marks]

$$f(x+2) = (x+2)^3 + 2(x+2) + 1 = x^3 + 6x^2 + 12x + 8 + 2x + 4 + 1 = f(x).$$

[1 mark]

(ii)

$$f(J+x) = J + x^3 + 2(J+x) + 1 = J + x^3 + 2x + 1 = J = 0.$$

[1 mark]

a is a zero $\Leftrightarrow a+1$ and a+2 are zeros by a) (since a=(a+1)+2=(a+2)+1). So J+x+1 and J+x+2 are the other zeros.

[1 mark]

(iii)

$$J+g_1(x) = J+g_2(x) \Leftrightarrow f(x) \mid (g_1(x)-g_2(x)) \Leftrightarrow f(x) = f(x+1) \mid (g_1(x+1)-g_2(x+1))$$

 $\Leftrightarrow J+g_1(x+1) = J+g_2(x+1).$

[3 marks]

This shows that $\varphi(J+g(x))=J+g(x+1)$ is well-defined and one-to-one.

[1 mark]

To show that it is onto and compute the inverse: $\psi(J + h(x)) = J + h(x+2)$ is also well-defined for similar reasons (or alternatively, $\psi = \varphi \circ \varphi$) and

$$\psi \circ \varphi(J + g(x)) = J + g(x+3) = J + g(x) = \varphi \circ \psi(J + g(x)).$$

[2 marks.]

(iv) Any isomorphism Φ has to map J+x to a zero of f, that is, to J+x or J+x+1 or J+x+2, and then $\Phi(J+g(x))=g(\Phi(J+x))$.

[2 marks]

$$15 = 2 + 2 + 1 + 1 + 1 + 1 + 3 + 1 + 2 + 2$$
 marks.

Standard exercises on quotient rings, parts of (iii) and (iv) are basically unseen, but also similar in part to standard homework exercises on computing inverse homomorphisms.

9a) Use the 2-design of lines in \mathbb{Z}_3^2 . The 9 points in \mathbb{Z}_3^2 correspond to the cars. The sessions correspond to the sets of parallel lines. Each set of parallel lines is of the form $\{ax + by + c = 0 : c \in \mathbb{Z}_3\}$ for fixed $(a, b) \neq (0, 0)$ (where $(\lambda a, \lambda b)$ gives the same line as (a, b) for $\lambda \neq 0$). The test-drivers correspond to the values of $c \in \mathbb{Z}_3$. In the incidence matrix below, 1 indicated that a car is tested by that driver in that session.

[4 marks for explanation]

*	(0, 0)	(1, 0)	(2, 0)	(0, 1)	(1, 1)	(2, 1)	(0, 2)	(1, 2)	(2, 2)
Session 1	*	*	*	*	*	*	*	*	*
x = 0	1	0	0	1	0	0	1	0	0
x + 1 = 0	0	0	1	0	0	1	0	0	1
x + 2 = 0	1	0	0	1	0	0	1	0	
Session 2	*	*	*	*	*	*	*	*	*
y = 0	1	1	1	0	0	0	0	0	0
y + 1 = 0	0	0	0	0	0	0	1	1	1
y + 2 = 0	0	0	0	1	1	1	0	0	0 .
Session 3	*	*	*	*	*	*	*	*	*
x + y = 0	1	0	0	0	0	1	0	1	0
x + y + 1 = 0	0	0	1	0	1	0	1	0	0
x + y + 2 = 0	0	1	0	1	0	0	0	1	
Session 4	*	*	*	*	*	*	*	*	*
x + 2y = 0	1	0	0	0	1	0	0	0	1
x + 2y + 1 = 0	0	0	1	1	0	0	0	1	0
x + 2y + 2 = 0	0	1	0	0	0	1	1	0	0

[7 marks]

b) The 2-design corresponding to Kirkman's Schoolgirls problem will do. The 7 days in Kirkman's problem correspond to the 7 testdriving session. The 15 girls correspond to the 15 cars. The 5 groups of girls (on each day) correspond to the 5 groups of cars driven by the 5 testdrivers.

4 marks

$$[15 = 4 + 7 + 4 \text{ marks}]$$

Part a) is similar to standard homework exercise, b) tests knowledge of Kirkman's schoolgirls problem (and would be similar to a standard homework problem, but harder, if it were developed).

10(i) We have $1+x^3=(1+x)(1+x+x^2)$ in $\mathbb{Z}_2[x]$. Hence, since $(1+y)^2=1+y^2$, we have

$$1 + x^{12} = (1 + x^3)^4 = (1 + x)^4 (1 + x + x^2)^4.$$

 $1+x+x^2$ is irreducible in $\mathbb{Z}_2[x]$ since it has no zero in \mathbb{Z}_2 - and of course 1+x is irreducible as well

[3 marks]

(ii) A general factor of $1 + x^{12}$ is of the form $(1+x)^r(1+x+x^2)^s$ where $0 \le r$, $s \le 4$. To get a factor g(x) of degree 5 we need r+2s=5, and the only possibilities are r=3, s=1 or r=1, s=2. To get a factor h(x) of degree 7 we must have r=3, s=2 or r=1, s=3.

[2 marks]

a) With canonical generator $g(x) = (1+x)^3(1+x+x^2)$, the check matrix is computed from

$$h(x) = (1+x)(1+x+x^2)^3 = (1+x^3)(1+x^2+x^4) = x^7+x^5+x^4+x^3+x^2+1$$

from which the check matrix is

All columns are distinct and nonzero. So this code corrects one error.

[5 marks.]

b) With canonical generator $g(x)=(1+x)(1+x+x^2)^2$, the check matrix is computed from

$$h(x) = (1+x)^3(1+x+x^2)^2 = (1+x)(1+x^6) = x^7 + x^6 + x + 1$$

from which the check matrix is

The first and seventh columns are the same. So the code has weight two and does not correct one error.

5 marks

$$[15 = 3 + 2 + 5 + 5 \text{ marks.}]$$

Standard homework exercise.

11(i) Every row of A has exactly three 1's (because there are three points on every line in $P^2(\mathbf{Z}_2)$). For any two rows of A, there is exactly one column where both have a 1, because any two lines intersect in exactly one point. So the distance between any two rows of A is 4.

[4 marks.]

Write $\mathbf{1}$, $\mathbf{0}$ for the vectors of all 1's and all 0's. If \mathbf{c} and \mathbf{c}' are rows of A with $\mathbf{c} \neq \mathbf{c}'$, then \mathbf{c} and $\mathbf{1} - \mathbf{c}'$ agree in the entries where \mathbf{c} and \mathbf{c}' differ. They agree in exactly four entries, and hence differ in three.

[3 marks.]

Let E be the matrix of all 1's. Since any row of A or E-A has either 3 or 4 1's, these all differ from $\mathbf{0}$ and $\mathbf{1}$ in at least three entries. So the minimum distance of C is 3.

[2 marks.]

(ii) There are $\binom{v}{i}$ words which differ from \mathbf{c} in exactly i entries (this being the number of i-element subsets of a v-element set). So the number of words differing from \mathbf{c} in $\leq e$ entries is

$$1+\binom{v}{1}+\cdots+\binom{v}{e}$$
.

[3 marks.]

Write $B(\mathbf{c})$ for this set. For minimum distance 2e+1, the sets $B(\mathbf{c})$ must all be disjoint. Since C' has m words and \mathbf{Z}_2^v has 2^v words, this gives

$$2^v \ge m\left(1+v+\cdots \left(egin{array}{c} v \\ e \end{array}
ight).$$

[2 marks.]

To get equality, take C' to be the code C of part a), which has m=16 words in \mathbb{Z}_2^7 and has minimum distance 2e+1=3 with e=1. The equality then says $2^7=16\times (7+1)=2^4\times 2^3$ - which is true.

1 mark.

[15 = 4 + 3 + 2 + 3 + 2 + 1 marks.]

(i) is similar to a homework exercise. Most of (ii) is basic theory. The last bit is unseen.