THE UNIVERSITY of LIVERPOOL

SECTION A

1. Give the definition of a zero-divisor in a ring.

For each of the following, state, with justification, whether it is a zero-divisor in the stated ring.

- (a) 3 + 4i in $\mathbf{Z}[i]$;
- (b) $4 \text{ in } \mathbf{Z}/15;$
- (c) $x \text{ in } \mathbf{Q}[x]/(x^2);$
- (d) 9 in $\mathbb{Z}/12$.

[9 marks]

- 2. Factor the following into irreducibles in the indicated rings:
 - (a) 5 in Z[i];
 - (b) $x^3 + 4x + 4$ in $\mathbb{Z}/5[x]$;
 - (c) $x^3 + 5x 105$ in $\mathbf{Z}[x]$.

[9 marks]

- **3.** (a) State the definition of *field* (in terms of the definition of "ring").
- (b) Let R be the ring $\mathbb{Z}/2[x]$ and I the ideal of R generated by $x^3 + x + 1$. Make a list of the elements of R/I, and prove directly from the definition that it is a field.

[9 marks]

- **4.** (a) Find the point of intersection of the lines x+2y+2z=0 and 2x+z=0 in $\mathbf{P}^2(\mathbf{Z}/3)$.
- (b) Find the line that passes through the points (0:4:1) and (3:1:2) in $\mathbf{P}^2(\mathbf{Z}/5)$. [9 marks]
 - **5.** Define t-(v, k, r)-design. Give an example of
 - (a) a 1-(6, 3, 2)-design;
 - (b) a 2-(4,3,2)-design.

[9 marks]

THE UNIVERSITY of LIVERPOOL

6. Consider a code over $\mathbb{Z}/3$ with check matrix

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 2 \\ 2 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 & 1 \end{pmatrix}.$$

- (a) State its dimension and its information rate.
- (b) Show that 01211 is in the code and that 21110 is not.
- (c) Decode the word 21110, assuming at most one error. [10 marks]

SECTION B

7. State the definition of ring homomorphism.

For each of the following ϕ , state whether it is a homomorphism from the given R to the given S. Justify your answers.

- (a) $R = \mathbf{Z}/3$, $S = \mathbf{Z}$, $\phi(0) = 0$, $\phi(1) = 1$, $\phi(2) = 2$.
- (b) $R = \mathbf{Z}[x], S = \mathbf{R}, \phi(f) = f(1/2).$
- (c) $R = \mathbf{Z}/15$, $S = \mathbf{Z}/3$, $\phi(n) = n \pmod{3}$.
- (d) $R = \mathbf{Z}/2$, $S = \mathbf{Z}/10$, $\phi(0) = 0$, $\phi(1) = 5$.

[15 marks]

- **8.** Define *ideal*. For each of the following rings R and subsets S of R, state whether S is an ideal of R. Justify your answers.
- (a) $R = \mathbf{Z}[i]$, S is the subset consisting of all elements with nonnegative imaginary part.
- (b) $R = \mathbf{Z}/5[x]$, S is the set of polynomials whose coefficients of 1 and x are 0.
 - (c) $R = \mathbf{R}, S = \mathbf{Z}.$
- (d) $R = \mathbf{Z}/2[x]/(x^9 1)$, S is the set of classes of polynomials f with f(1) = 0.

[15 marks]

THE UNIVERSITY of LIVERPOOL

- **9.** Let $R = \mathbb{Z}/2[x]$, let $f(x) = x^4 + x + 1$ (which you may assume to be irreducible in R).
- (i) Give the number of elements of R/I and the number of elements of $(R/I)^*$. State the possible orders of elements of $(R/I)^*$.
 - (ii) Show that $x^2 + x$ has order 3 in $(R/I)^*$.
- (iii) Write $(x^2 + x)(x^3 + x)$ and $(x^2 + x) + (x^3 + x)$ in standard form as an element of R/I.
- (iv) Given that $x^3 + x$ has order 5, state the order of $(x^2 + x)(x^3 + x)$. Justify your answer. [15 marks]

- 10.(i) Show that neither (a) a 2-(14, 5, 2)-design, nor (b) a 2-(15, 6, 1) design cannot exist.
 - (ii) Show that the set of sets

$$\{\{i, i+1, i+4, i+6\} : i \in \mathbb{Z}/13\}$$

constitutes a 2-(13, 4, 1)-design.

[15 marks]

- 11. In this problem, let R be the ring $\mathbb{Z}/5[x]$.
 - (i) Find a polynomial $g \in R$ such that $g \cdot (x^3 + 3x^2 + 2x + 4) = x^6 1$.
- (ii) Let C be the cyclic code of length 6 over $\mathbb{Z}/5$ generated by $x^3 + 3x^2 + 2x + 4$. Write down a check matrix for C.
- (iii) State a theorem about check matrices that guarantees that C corrects at least one error.
- (iv) Assuming at most one error, correct these words: 231204, 111102, 121303.

[15 marks]