M244 2003 Solutions

Section A

1. To say that {vi,ve,...,v,} spans V means that every element in V' can
be written as a linear combination

Av1 4 Agvg + -+ + Apup,.

[1 mark]

When we take the vectors (1,0,—1),(1,—2,1) and (2,2, —4), it is clear

that the first two are independent, so we investigate what happens if we
write

(27 2, _4) = >‘(1a 0, _1) + /'L(la -2, 1)
This leads to three equations: 2 = A+ pu, 2 = —2u and —4 = =\ + pu.

We see that 4 = —1 and so A = 3. Since these equations have non-zero
solutions, the third vector depends on the first two so U has basis (1,0, —1)
and (1,—2,1) and dimension 2. [2 marks]

To show that W is a subspace, note that the zero vector (0,0,0) is in
W because 0+ 0+ 0 = 0. If (z1,y1,21) and (z2,y2, 22) are in W, so that
1+ y1 +21 =0 and z9 + yo + 20 = 0, then

(z1,91,21) + (72,92, 22) = (71 + T2, 91 + Y2, 21 + 22)

and since
Titrotyityetatz=(@ +yi+z2)+(@2+y2+23)=0+0=0,

it follows that (z1 +x2,y1 +y2, 21 +22) is in W. Finally, let (z,y,2) be in W
and A be any real number. Then z+y+ 2z = 0 and A(z,y,2) = (Az, Ay, Az).
Since

A+ Ay+dz=Az+y+2)=A0=0,

is follows that A(z,y,z) is also in W and that W is a subspace of V.
[3 marks]
Now
W = {(z,y,2):x+y+2z=0}
= {(z,9,2) 1 2=—(z +y)}
= {(zy,—(=+y)}



Since (1,0, —1) and (0, 1, —1) are clearly linearly indepedent, they are a basis
for W so W also has dimension 2. [2 marks]

Now if (z,y,z) is in UNW, then z = —(z + y) and so (z,y, —(z +v)) is
a linear combination of (1,0,—1) and ((1,—-2,1):

(z,y,—(z + 1)) = M1,0, -1) + u(1,2,1)

this gives z = A+ p, y = 2u and —(z +y) = —A + p. Thus p = y/2 and
A=z —y/s (from the first two equations). The third is then also satisfied,
so every element in W is an element of U (also because the 2 basis vectors
are in W). It follows that U =W,soUNW =U and U + W =U.

[2 marks]

2. A group is a set G with a law of composition satisfying the following
axioms:

G1) for any z,y € G, zy is in G;

(
(G2) for any z,y,z in G, z(yz) = (zy)z;

(G3) there is an element e in G such that for all g € G, ge = g = eg;
(G4)

G4) given an element g € G, there is an element g—! of G with gg~! = e =
-1
g g

Given two groups (G, o) and (H,x), a map f is a homomorphism if

flgoh) = f(g)xf(h)

for all elements g, h of G .

The kernel of f is the set of elements g in G such that f(g) = ep.

The image of f is the set of those elements in i which are images of
elements of G under f. [6 marks]

To show that ¢ is a homomorphism consider two matrices 4, B in G,
then

1 al b1 1 a9 b2
d)(AB) = ¢ 01 Cc1 01 C2
00 1 0 0 1
1 ai; +ag b1+62a1+b2
= ¢ 0 1 c1+e
00 1
= a1 +ta2



Since ¢(A) = a1 and ¢(B) = az and the group operation in H is addition,
we see that ¢ is a homomorphism. [2 marks]
The kernel of ¢ is the set of matrices in G with ‘a = (’, so

1 b
ker¢p ={| 0 ¢ |:bceR}.
0 1

S = O

The image of ¢ is the whole of R since any real number could occur as the
appropriate entry of an element A of G. [2 marks]

3. Since L(1) =23 =0-1+0-2+ 022+ 1-2° the entries in the first
column of M are 0, 0, 0, 1. Similarly, we have L(z) = z?, L(z?) = z and
L(z3) = 1. Tt follows that the matrix M is

0 0 01
0010
M= 01 020
1 0 00
[2 marks]
We next compute det(AI — M) to get
det(\[ — M) =
A0 0 -1
0o XX -1 0
=detl g 1A o
-1 0 0 X
A -1 0 0 x -1
=2l -1 xo0|-(-1D] 0 -1 A
0 0 X -1 0 0
= A = (=1)(=2+0)) + (=A()) + 1)
= M-A-X+1
= 1y

It follows that M has two repeated eigenvalues, namely 1 (twice) and —1
(twice). [4 marks]

When A = 1, a vector v = a+ bz +cx? +dz? is an eigenvector if L(v) = v,
so d+ cx +bz? +az® = a+ bz + cx? + dr3. This occurs precisely if d = a and
b = c, so the eigenvectors are the polynomials of the form a + bz + bz? + az3.



[2 marks]

When A = —1, a vector v = a + bz + cz? + dz?® is an eigenvector if
L(v) = —v, so d + cz + bz? + az® = —a — bz — cx? — dz®. This occurs
precisely if d = —a and b = —c¢, so the eigenvectors are the polynomials of
the form a + bz — bz? — az. [2 marks]

4. The map ¢ will take the vector (1,0) to that obtained by rotating anti-
clockwise through 90° so (1,0) maps to (0,1) and (0, 1) itself maps to (—1,0).

Thus the matrix of ¢ is M = (1) _(1) [2 marks]
Since £ is the y-axis, (1,0) is mapped by o4 to (—1,0), and (0,1) is mapped

to itself. It follows that A, the matrix representing oy is A = _é (1) .
[2 marks]

Also k is the line x = y, so (1,0) is mapped by o, to (0,1), and (0,1)
is mapped to (1,0). It follows that B, the matrix representing oy is B =

0 1

1 0/

Finally the composite map will have matrix

-1 0 0 1 0 -1
AB:( 0 1)(1 0>:<1 0)'
[2 marks]

This is the matrix M, which represents a rotation anti-clockwise through
90°. The powers of M are M? = —I, M® = —M and M* = I, so the required
integer is 4. This shows that after 4 rotation through 90°, one returns to
the starting position. [2 marks]

[2 marks]

5. We are given that f((z1,z2), (y1,92)) = Z1y1 — 1Y2 + x2y2. Thus

£((2,2),(2,2) = 2-2-2-2+2.2=4
f((2,2),(0,1)) = 2:0—-2-14+2-1=0
£((0,1),(2,2) = 0-2-0-2+1-2=2
£((0,1),(0,1)) = 0-0-0-1+1-1=1
. . 4 0
so the required matrix is A = < 9 1 ) [3 marks]



Similarly for the basis (1,1), (0, -1)

f((lvl)v(lvl)) = 1-1-1-141-1=1
f((lal)a(oa_l)) = 1'0_1'(_1)+1'(—1):0
F(0,-1),(1,1)) = 0:1-0-14(-1)-1=-1
£((0,-1),(0,-1)) = 0:0—0--1+(-1)-(-1)=1=1
so, in this case, the required matrix is B = ( _1 (1) ) [3 marks]

(12 0
AlsoP—( 0 _1>so,

T 172 0 4 0 1/2 0
rar = (7 0) (2 1) (75 0)
(12 oN[2 o
N 0 -1 1 -1
B 10
- (49)
= B
as required. [3 marks]

6. The rank of f is the dimension of the image of f and the nullity is
the dimension of the kernel of f.
[2 marks]
To find the kernel of f, find those (z,y, z) withz+y—2 =0, z—y+22 =0
and 2z + z = 0. Any method for doing this is accepted, but the last says
2z = —z and the first then says 3z + y = 0. Since this is precisely the
second equation the solution set is (z, —3z, —2z) Thus kerf has dimension
1 (spanned by (1, -3, -2)) and the nullity of f is 1.
[2 marks].
The image of f is the space spanned by the columns of the matrix of f, so
is spanned by (1,1,2),(1,—1,0) and (—1,2,1). Since the third is dependent
on the first two (2(—1,2,1) = (1,1,2) —3(1,—1,0)) and the first two are (by
inspection) linearly independent, this space has dimension 2 and the rank is
2.
[2 marks]

Section B



7. To show that U is a subspace note

the zero polynomial is in U (take a = b=d = 0);

if a1 + bz + (a1 + b1)z? + di2® and ap + box + (ag + bo)z? + doz® are in
U then

(a1 + b1z + (a1 + by)z? + dyz® + (ag + boz + (ag + by)z? + daa®)
is equal to
(a1 + a2) + (b1 + b2)z + (a1 + b1 + az + bo)z? + (di + d2)z®

Since this is in U, U is closed under addition;
finally,

Ma + bz + (a + b)2? + dz®) = Xa + Moz + Aa + b)z? + \da®.

We have therefore shown that U is a subspace.

Similarly for W, we check the standard requirements:

the zero polynomial is in W (take a = 0);

if a1 + a1z + a122 + a12% and a9 + asx + a9z + a9x® are in W then their
sum is (a1 + ag) + (a1 + a2)z + (a1 + a2)z? + (a1 + a2)z>, which is also in
W, so W is closed under addition;

finally,

Ma + az + az? + a®) = Aa + Aaz + Aaz? + haz?.

We have therefore shown that W is a subspace. [4 marks]
To find the dimension of U, note that 1+ 22,z + 22 and z3 are all in U.
These are clearly linearly independent: if

ML+ 2d) +p@+2*)+ve® =0

then equating the constant terms gives A = 0, equating coefficents of = gives
p = 0 and equating coefficients of 23 gives v = 0. They also span U because

a+ bz + (a + b)z? + dr® = a(1 + ) + b(z + %) + dz.

These polynomials therefore form a basis and U has dimension 3. [3 marks]
Next, every element of W is of the form a(1 + z + x? + z3), so W has a
basis of one element and so has dimension 1. [2 marks]
Next, if f(z) is in U N W then f(z) has all coefficients equal (since it is
in W) but the third coefficient is the sum of the first two (since F' is in W).
It follows that U N W = {0} so this intersection has dimension zero.



[2 marks]
Finally, we see that 1 is in U + W by taking

(—z -2 2+ (1 + 2+ 2% + 1)
with —z — 22 — 23 being an element of U and 1 + z + 22 + 2® being an
element of W. Similarly,

= (-1-2-2%)+ (1 +2z+2*+2°) and
2 = (1+z+2%4+2%) - 1 +az+2%+ 23

since z? is also in U + W (because z* is in W). Thus each standard basis
vector isinU+W,soU+W =V. [3 marks]

From the information we have already calculated, it is clear that V is
the direct sum of U and W. [1 mark]

8. The dual space is defined to be the set of all linear maps from V to R.
Given 6, ¢ in V*, we can define 6+ ¢ by (0+ ¢)(z) = 0(z) + ¢(z). Similarly,
for A in R, we define (A\0)(z) = A\(0(x)).

Given a basis {z1,z2,...,z,} for V, we define ¢; as the unique linear
map which maps z; to 1, but all other basis elements to 0. To prove this
gives a dual basis, suppose first that f is any linear map from V to R. Let
A; be that scalar which f maps z; to (so that A\; = f(z;)). Then for any j
the map A1¢1 +- -+ Ay, takes z; to A; (since ¢;(z;) = 0 for i # j). Thus the
maps f and A1+ -+ Ay, agree in their action on a basis for V' so must be
equal and the vectors ¢y, ... ¢, span V*. Now to check linear independence,
suppose that A\i¢1+- - - Ap¢pp, = 0. Then, for any z;, (A1d1+--- Apdp)(z;) =0
we also know that (Ai¢1+- - Andp)(z;) = A, so each A; would then be zero.

Thus {¢1,...,¢n} is a basis for V*. [7 marks]
Thus we have that
$1(v1) =1;  ¢1(v2) =0  1(v3) =0
$1(ve) =0;  da(v2) =1 ¢a(v3) =0
p1(v3) =0;  #3(v2) =0  ¢3(v3) = 1.

[1 mark]

Now if ¢1(z,y,2) = a1z +b1y+c12, we obtain a1 +b1+¢1 = 1, a1 +2b1 +
4¢1 = 0 and a7 — by + ¢ = 0. We now solve these equations for aq, b1, c; to
get 2a; +2¢1 =1 (so ¢; = 1/2—a1). We can now re-write the first two to say
bi+1/2=1(so by =1/2) and a; +4c; = —1 (so a1 = +1 and ¢; = —1/2),



so that ¢1(x,y,z) = x + y/2 — z/2. Similar calculations are carried out to
determine ¢o: we solve

as+by+ca=0, as+2by+4co =1, andas —by+c3 =0

These give ag = —1/3,by = 0 and ¢y = 1/3 so that ¢o(z,y,z) = —z/3+2/3.
For ¢3, we solve

a3 +b3+c3=0, az+2b3+4c3 =0, and a3 —bz+c3=1.

This time the solution is a3 = 1/3,b3 = —1/2 and ¢3 = 1/6 so that ¢3 is
given by ¢3(z,,y,2) =z/3 —y/2 + 2z/6. [5 marks]

Finally

$1(3,2,1) = 342/2-1/2="1/2;
$2(3,2,1) = —3/3+1/3=-2/3;
$3(3,2,1) = 3/3—2/2+1/6=1/6.

[2 marks]

9. The given form is q(z,y, z) = 2 + 6zy + y> + 422 so its matrix is

1 30
A=13 10
0 0 4
[1 mark]
The eigenvalues of A are the zeros of the polynomial
det(A\I — A) =
A—-1 -3 0
det -3 A-1 0 =
0 0 Ax—4

A—1 0 -3 0
(A—l)det( 0 /\_4)+3det< 0 )\_4> =

A=A =1)(A—4)+3(-31+12) =
A=49((A-1)* -9
(A =4\ —2X - 8)
A=A =D\ +2).



It follows that the eigenvalues are 4 (twice) and —2. [4 marks]
The eigenvectors for eigenvalue —2 are given by

1 3 0 x —2z
310 y | = —2y
0 0 4 z —2z

so we obtain the equations z +3y = —2z (or z +y = 0), 3z +y = —2y (also

giving z +y = 0) and z = —2z (so z = 0). Thus a typical eigenvector is

(z,—z,0). [2 marks]
The eigenvectors for eigenvalue 4 are given by

1 3 0 T 4z
310 y | =1 4y
0 0 4 z 4z

This time the equations are z + 3y = 4z (or z = y) 3z +y = 4y (also giving
x =1y) and 4z = 4z (so no constraints on z). A typical eigenvector is of the
form z(1,1,0) + 2(0,0,1). [3 marks]

The required P is obtained by putting these eigenvectors into columns
SO

1
P=1 -1 and D =
0

O = =
= O O
S O N
O O
O O

[2 marks]

The surface becomes —2X?2+4Y2+47? = 25, a hyperboloid of one sheet
with circular cross-sections on planes parallel to the XY -plane (cooling tower
shape) [3 marks]

10 (i) To show e is unique, suppose that G had two identities e; and e, then
e1 = g = gey; and eag = g = gey for all g in G. Now consider the element
ei1es. Since ey is a left identity, this is es, and since es is a right identity this
is e1 s0 e1 = es. [2 marks]

(ii) Suppose that aob = g = aoc for some elements a, b, ¢ in G. Multiply
the equation aob = aoc on both sides by the inverse of a to get a 'o(aocb) =
a~'o(aoc). Now use associativity to get (a7~ oa)ob = (a='oa)oc. Since
a~ ! is the inverse for a, ! oa = €, so we obtain e o b = e o c. The result
now follows since e is an identity element. [2 marks]

Now if an element g is repeated in the same row of a table, then g will
be of the form a o b and also of the form a o ¢ for some a,b, and ¢, so the
above argument shows that b = c. [1 mark]



For columns, if a o b = c o b, we multiply on right by b~! and again use

associativity, inverse and identity to deduce that a = c. [2 marks]
(iii) Inspecting the given table, we see that bo (cod) = boa = d, whereas
(boc)od=aod=», so the operation is not associative. [3 marks]

Now suppose G is a group so that we have (from the given information)
a partial table

e a b c d
ele a b ¢ d
ala e c ?
b|b e
clec e
d|d e

If G is to be a group, the entry marked ? cannot be a, e or ¢ (already in row
or d (already in column), so must be b. This makes the other missing entry
in this row d. Giving

A 2 e
Q@ |
oo oo
LI IS W o oY
> Q| &

QL O o8 @

d e

The entry marked now is not ¢,d or b, e so must be a. This makes the last
entry in this row ¢ and the second entry d.

e a b ¢ d
ele a b ¢ d
ala e ¢ d b
b|b d e a c
c|c e 7
d|d e

The missing entry in the last column must be a, the third entry in that row
must then be d and the second b. The final row then fills in uniquely and
we obtain the table given at the start of the question which we have shown
is non-associative, so G is not a group. [6 marks]

10



