
SOLUTIONS FOR MATH244 (SEPTEMBER 2006)

Section A

1.

(a) The span of {v1, . . . , vk} is the set of all linear combinations of v1, . . . , vk:

span(v1, . . . , vk) = {λ1v1 + · · ·+ λkvk : λ1, . . . , λk ∈ K}.
(It is acceptable if students just cover the case of a real vector space, writing R
instead of K.) [2 marks]. Standard definition from lectures.

(b) First method : First put u1, u2, u3 as the rows of a matrix, and use row operations
to reduce to echelon form. Solution:3 0 1

1 −2 1
1 4 −1

 −→ . . . −→

3 0 1
0 3 −1
0 0 0

 .

Thus (3, 0, 1), (0, 3,−1) is a basis of U , and the dimension is 2.
Second method : Find a nontrivial solution to the equation λu1 + µu2 + νu3 = 0;

e.g. (3, 0, 1) − 2(1,−2, 1) − (1, 4,−1) = (0, 0, 0). So the three vectors are linearly
dependent, so dimU < 3. On the other hand, there are clearly two linearly inde-
pendent vectors among the three vectors given (any pair will do), so dimU ≥ 2.

Remark: An easy way to check whether a given basis for U is correct is to note
that U = {(x, y, z) : x− y = 3z}.

[3 marks]. Standard exercise.
(c) First method : Again, put w1, w2, w3 as the rows of a matrix, and use row operations

to reduce to echelon form: 2 2 0
−4 2 −2
5 2 1

 −→ . . . −→

3 0 1
0 3 −1
0 0 0

 .

Therefore the space W also has the basis {(3, 0, 1), (0, 3,−1)}, and so U = W .
Second method : Since we have already computed the dimension of U as 2, and

the dimension of W is clearly at least 2, it is enough to check that W ⊂ U ; i.e., each
of the vectors wj belongs to U . This can be done, for example, by writing them as
linear combinations of u1 and u2 (again solving a system of linear equations):

w1 = u1 − u2, w2 = −u1 − u2, w3 = 2u1 − u2.

[4 marks]. Standard exercise.

9 marks in total for Question 1
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2. A group is a set G together with a binary operation ∗ such that: (G1) for all
g1, g2 ∈ G, g1 ∗ g2 ∈ G; (G2) for all g1, g2, g3 ∈ G, g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3; (G3) there
exists an element e ∈ G such that, for all g ∈ G, e ∗ g = g ∗ e = g; (G4) for every g ∈ G,
there exists g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e.

[2 marks]. Standard definition from lectures.
If G,H are groups, then a map ϕ : G → H is a homomorphism if, for all g1, g2 ∈ G,

ϕ(g1 ∗1 g2) = ϕ(g1) ∗2 ϕ(g2), where ∗1 is the group law in G and ∗2 is the group law in H.
[1 marks]. Standard definition from lectures.

The map ϕ is injective if, for all g1, g2 ∈ G, ϕ(g1) = ϕ(g2) ⇒ g1 = g2. The map ϕ is
surjective if, for all h ∈ H, there exists g ∈ G such that ϕ(g) = h.

[2 marks]. Standard definitions from lectures.
Let x, y be arbitrary non-zero real numbers. We have

ϕ(xy) =

(
xy 0
0 (xy)2

)
=

(
xy 0
0 x2y2

)
=

(
x 0
0 x2

) (
y 0
0 y2

)
= ϕ(x)ϕ(y).

Hence ϕ is a homomorphism.
[2 marks]. Seen somewhat similar in exercises.

If ϕ(x) = ϕ(y), then (comparing the top left entries), we must have x = y, so ϕ is
injective. The map ϕ is clearly not surjective, as e.g.

ϕ(x) 6=
(

0 1
1 0

)
for all x ∈ G.

[2 marks]. Seen similar in exercises.
9 marks in total for Question 2
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3.

(a) A function ϕ : G → G is an isomorphism if ϕ is a homomorphism, injective and
surjective.

[2 marks]. Standard definition from lectures.
(b) The composition ϕ ◦ ψ of two isomorphisms is again an isomorphism. Indeed, we

see that the composition is still a homomorphism:

ϕ(ψ(v1v2)) = ϕ(ψ(v1)ψ(v2)) = ϕ(ψ(v1))ϕ(ψ(v2)).

If ϕ(ψ(v1)) = ϕ(ψ(v2)), then ψ(v1) = ψ(v2) by injectivity of ϕ, and thus v1 = v2

by injectivity of ψ. So ϕ ◦ ψ is injective.
Let w ∈ V . Then by surjectivity of ϕ, there is v1 ∈ V such that ϕ(v1) = w. By

surjectivity of ψ, there is v ∈ V such that ψ(v) = v1. Then ϕ(ψ(v)) = ϕ(v1) = w,
so ϕ ◦ ψ is surjective.

[4 marks].
Associativity is clearly satisfied. The neutral element is given by the identity map

ϕ(v) = v. The inverse element of ϕ is given by its inverse ϕ−1.
[3 marks]. Similar examples seen in exercises and lecture.

9 marks in total for Question 3
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4.

(a) Let e1, e2, e3, e4 be the standard basis vectors of R4. Then

ϕ(e1) = (−1, 0, 4, 0) = −1 · e1 + 4 · e3,
so that the first column of the matrix should have entries −1, 0, 4, 0. Proceeding
similarly for e2, e3 and e4, we get

M =


−1 0 0 0
0 3 0 0
4 0 3 4
0 0 0 −1

 .

[3 marks] Seen similar in exercises.
(b) We now compute

det(λI −M) =

∣∣∣∣∣∣∣∣
(λ+ 1) 0 0 0

0 (λ− 3) 0 0
−4 0 (λ− 3) −4
0 0 0 (λ+ 1)

∣∣∣∣∣∣∣∣
= (λ+ 1)

∣∣∣∣∣∣
(λ− 3) 0 0

0 (λ− 3) −4
0 0 (λ+ 1)

∣∣∣∣∣∣ = (λ+ 1)2(λ− 3)2.

So the eigenvalues of λ are −1 and 3.
[3 marks] Standard exercise.

To find the eigenvectors corresponding to these eigenvalues, we must solve the
equations (I +M)v = 0 and (3I −M)v = 0:

0 0 0 0
0 4 0 0
4 0 4 4
0 0 0 0

 −→


0 1 0 0
1 0 1 1
0 0 0 0
0 0 0 0

 ,


4 0 0 0
0 0 0 0
−4 0 0 −4
0 0 0 4

 −→


1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 .

So we see that the eigenvectors with eigenvalue −1 are of the form (λ, 0, µ,−λ−µ)
and those with eigenvalue 3 are of the form (0, λ, µ, 0).

[2 marks] Standard exercise.
(c) In particular, the matrix M is diagonalizable, since we can find a basis of four lin-

early independent eigenvectors, e.g. ((1, 0, 0,−1), (0, 0, 1,−1), (0, 1, 0, 0), (0, 0, 1, 0)).
[2 marks] Standard exercise.

10 marks in total for Question 4
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5. We compute:

f(u1, u1) = 2 · 2 + 2 · 1 · 2 + 1 · 1 = 9,

f(u1, u2) = 2 · (−1) + 2 · 1 · (−1) + 1 · 2 = −2,

f(u2, u1) = (−1) · 2 + 2 · 2 · 2 + 2 · 1 = 8,

f(u2, u2) = (−1) · (−1) + 2 · 2 · (−1) + 2 · 2 = 1,

So, the matrix of f wrt u1, u2 is

A =

(
9 −2
8 1

)
.

[3 marks]
Similarly,

f(v1, v1) = 1 · 1 + 2 · 3 · 1 + 3 · 3 = 16,

f(v1, v2) = 1 · 0 + 2 · 3 · 0 + 3 · 5 = 15,

f(v2, v1) = 0 · 1 + 2 · 5 · 1 + 5 · 3 = 25,

f(v2, v2) = 0 · 0 + 2 · 5 · 0 + 5 · 5 = 25,

So the matrix of f wrt v1, v2 is B =

(
16 15
25 25

)
.

[3 marks]
To compute the change-of-basis matrix, we write vj as linear combinations of the uj.

(Again, this will involve solving a system of linear equations.)

(1, 3) = 1 · (2, 1) + 1 · (−1, 2)

(0, 5) = 1 · (2, 1) + 2 · (−1, 2).

So the change-of-basis matrix is P =

(
1 1
1 2

)
.

Alternatively, we can obtain P as the composition of change-of-basis matrices from the
given bases to the standard basis:

P =

(
2 −1
1 2

)−1

·
(

1 0
3 5

)
=

1

5

(
2 1
−1 2

) (
1 0
3 5

)
=

1

5

(
5 5
5 10

)
.

Finally, it is easily checked that

P TAP =

(
1 1
1 2

) (
9 −2
8 1

) (
1 1
1 2

)
= B.

[3 marks].
9 marks in total for Question 5

Whole question: seen similar in exercises.
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6. The rank of ϕ is the dimension of Im(ϕ). The nullity of ϕ is the dimension of ker(ϕ).
[1 mark]. Standard definitions from lectures.

The rank and nullity theorem states that

dimV = rank(ϕ) + nullity(ϕ).

[1 mark]. Standard theorem from lectures.
For v1 = a1x

2 + b1x+ c1 and v2 = a2x
2 + b2x+ c2 and λ, µ ∈ R, we have

ϕ(λv1 + µv2)

= ((λa1 + µa2 + λc1 + µc2,−2(λc1 + µc2) + λb1 + µb2 − 2(λa1 + µa2), 3(λb1 + µb2))

= λ(a1 + c1,−2c1 + b1 − 2a1, 3b1) + µ(a2 + c2,−2c2 + b2 − 2a2, 3b2) = λϕ(v1) + µϕ(v2).

Thus ϕ is linear.
[2 marks]. Standard exercise.

There are several ways of determining the rank and nullity; usually we would want to
use the rank and nullity theorem. For example, consider an arbitrary polynomial v =
ax2 + bx+ c in V . Then v ∈ ker(ϕ) if and only if

a+ c = 0, −2c+ b− 2a = 0 and 3b = 0,

which is clearly the case if and only if b = 0 and a = −c. So

ker(ϕ) = {ax2 − a : a ∈ R}.
So nullity(ϕ) = 1. Consequently rank(ϕ) = dim(V )− nullity(ϕ) = 3− 1 = 2.

[4 marks]. Standard exercise.
Since nullity(ϕ) 6= 0, ϕ is not an isomorphism.

[1 mark]. Standard exercise.
(Remark: We have Im(ϕ) = {(a, b, c) : 6a+ 3b = c}.)

9 marks in total for Question 6
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Section B

7. The matrix of the quadratic form

q(x, y, z) = 3x2 − y2 − 3z2 + 8xz.

with respect to the standard bases is

A =

3 0 4
0 −1 0
4 0 −3

 .

[3 marks].
We can find a basis with respect to which q is diagonal by finding a basis consisting of

orthogonal eigenvectors of A. The characteristic polynomial is

det(λI − A) =

∣∣∣∣∣∣
(λ− 3) 0 −4

0 (λ+ 1) 0
−4 0 (λ+ 3)

∣∣∣∣∣∣
= (λ+ 1)

∣∣∣∣((λ− 3) −4
−4 (λ+ 3)

)∣∣∣∣
= (λ+ 1)(λ2 − 9− 16)

= (λ+ 1)(λ− 5)(λ+ 5),

so the eigenvalues are −1, 5, −5. Solving the corresponding linear equations gives eigen-
vectors (0, 1, 0), (2, 0, 1) and (1, 0,−2). The desired matrix P is thus given by

P =

0 2 1
1 0 0
0 1 −2

 .

The desired diagonal matrix is

D = P TAP =

−1 0 0
0 25 0
0 0 −25

 .

[9 marks].
The diagonal matrix has full rank, so the rank of q is 3. The signature is the number

of positive entries minus the number of negative entries, and is thus −1. The surface is a
hyperboloid of two sheets.

[3 marks].
15 marks in total for Question 7 Seen somewhat similar in exercises.
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8.

(a) Statement (ii) is true. Indeed, we have

b = eb = (a−1a)b = a−1(ab) = a−1(ac) = (a−1a)c = ec = c.

[2 marks]. Seen in Lectures.
Statement (i) follows from (ii), letting c = e. (Alternatively, it can be proved in

the same way as (ii).)
[2 marks]. Seen in Lectures.

Statement (iii) is false. For example, let G = C2, and let a be the unique non-
identity element. Then a2 = e, but a 6= e.

[3 marks]. Unseen.
(b) First of all, since ED = E, D must be the identity element of the group. So we can

fill in the corresponding column and row:

* A B C D E
A ? D ? A ?
B ? C ? B A
C ? ? A C ?
D A B C D E
E ? ? ? E ?

Every line and column in the group table must contain each element. The second
column is only missing elements A and E; however, the last row already contains
an E. So we can complete this column:

* A B C D E
A ? D ? A ?
B ? C ? B A
C ? E A C ?
D A B C D E
E ? A ? E ?

To continue, we can observe, for example, that BA = BEB = AB = D. This
allows us to fill in the second row.

* A B C D E
A ? D ? A ?
B D C E B A
C ? E A C ?
D A B C D E
E ? A ? E ?
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It is now easy to fill in the rest of the group table:

* A B C D E
A E D B A C
B D C E B A
C B E A C D
D A B C D E
E C A D E B.

[5 marks]. Seen similar in exercises.
(c) The cyclic group C5 with five elements has the same group table.

[3 marks]. Unseen.

15 marks in total for Question 8
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9. Let V = R2×2, and let

U :=

{(
a b
c d

)
: b+ c = 0 and a+ d = 0

}
.

W :=

{(
a b
c d

)
: b+ c = 0, a+ c = 0 and a = b

}
.

Let v1 =

(
a1 b1
c1 d1

)
and v2 =

(
a2 b2
c2 d2

)
be elements of U . Then

λv1 + µv2 =

(
λa1 + µa2 λb1 + µb2
λc1 + µc2 λd1 + µd2

)
,

and we see that

(λc1 + µc2) + (λd1 + µd2) = λ(c1 + d1) + µ(c2 + d2) = λ · 0 + µ · 0 = 0, and

(λa1 + µa2) + (λd1 + µd2) = λ(a1 + d1) + µ(a2 + d2) = 0;

i.e., v1 + v2 ∈ U . Thus U is a subspace of V . [4 marks].

If

(
a b
c d

)
∈ U , then we have d = −a and c = −b, so we can write(

a b
c d

)
=

(
a b
−b −a

)
= a

(
1 0
0 −1

)
+ b

(
0 1
−1 0

)
,

so the two vectors ((
1 0
0 −1

)
,

(
0 1
−1 0

))
form a spanning set of U . Since they are also clearly linearly independent, they form a
basis of U , and thus the dimension of U is two.

Similarly, the vectors ((
1 1
−1 0

)
,

(
0 0
0 1

))
form a basis for W , and the dimension of W is also two.

[4 marks].

Since the vector

(
1 1
−1 −1

)
belongs to both U and W , we see that the dimension of

U ∩W is at least 1; since U 6= W , the dimension is also at most 1. In particular, the above
vector forms a basis for U ∩W .

(Alternatively, we can solve the equations in the definitions of U and W simultaneously,
and obtain b = a, c = −a and d = −a.) [3 marks].

We thus have dim(U +W ) = dimU + dimW − dim(U ∩W ) = 2 + 2 − 1 = 3. A basis
for U +W is given by the three vectors((

1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
0 0
0 1

))
,
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which are clearly linearly independent.
[3 marks].

Since U ∩W 6= {0}, V is not the direct sum of U and W .
[1 mark].

15 marks in total for Question 9 Seen similar in exercises
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10.

(a) We have

ker(ϕ) = {(x, y, z) : y = −4x, z = 2x}
= {(x,−4x, 2x) : x ∈ R}.

A basis for this space is given by (1,−4, 2), so nullity(ϕ) = 1.
[3 marks]. Standard exercise.

In particular, we see that rank(ϕ) = 3 − 1 = 2, so we only need to find two
linearly independent vectors in the image of ϕ. Two such vectors are given by
v1 = ϕ(0, 1, 0) = (0, 1, 0) and v2 = ϕ(0, 0, 1) = (0, 0, 1).

(Any basis of Im(ϕ) = {(0, y, z) : y, z ∈ R} gives a correct answer.)
[3 marks]. Standard exercise.

(b) We have already seen that the vectors {(0, y, z) : y, z ∈ R} are eigenvectors of ϕ with
eigenvalue 1, and that the vectors (x,−4x, 2x) are eigenvectors with eigenvalue 0.
Since the dimensions of these spaces add up to three, these are all the eigenvectors
and eigenvalues of ϕ.

(Alternatively, write down the matrix of ϕ with respect to the standard basis,
and find all the eigenvectors and eigenvalues by solving the characteristic equation,
etc.) [3 marks].

(c) Since we have found three linearly independent eigenvectors, ϕ is diagonalizable, so
the Jordan normal form of ϕ is diagonal. A basis which diagonalizes ϕ is given by
any basis consisting of three linearly independent eigenvectors; e.g.

B = ((1,−4, 2), (0, 1, 0), (0, 0, 1)).

[3 marks].
It is now easy to compute the matrix A, and verify that indeed

A =

0 0 0
0 1 0
0 0 1

 ,

as required.
[3 marks]. Similar example seen on exercise sheet.

15 marks in total for Question 10


