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SECTION A

The span of {vy,...,vx} is the set of all linear combinations of vy, ..., vg:
span(vy, ..., vE) = {\v1 + -+ Mgt A, ., A € KT

(It is acceptable if students just cover the case of a real vector space, writing R
instead of K.) [2 marks]. Standard definition from lectures.
First method: First put uq,us, uz as the rows of a matrix, and use row operations
to reduce to echelon form. Solution:

3 0 1 3 0 1
1 -2 1 —...— |0 3 -1
1 4 -1 00 O

Thus (3,0,1),(0,3,—1) is a basis of U, and the dimension is 2.

Second method: Find a nontrivial solution to the equation Auy + pus + vug = 0;
e.g. (3,0,1) —2(1,—-2,1) — (1,4, —1) = (0,0,0). So the three vectors are linearly
dependent, so dimU < 3. On the other hand, there are clearly two linearly inde-
pendent vectors among the three vectors given (any pair will do), so dimU > 2.

Remark: An easy way to check whether a given basis for U is correct is to note
that U = {(z,y,2) : ¢ —y = 3z}.

[3 marks]. Standard exercise.
First method: Again, put wy, wy, w3 as the rows of a matrix, and use row operations
to reduce to echelon form:

2 2 0 3 0 1
-4 2 2] —...— [0 3 -1
5 2 1 00 O

Therefore the space W also has the basis {(3,0,1),(0,3,—1)}, and so U = W.
Second method: Since we have already computed the dimension of U as 2, and
the dimension of W is clearly at least 2, it is enough to check that W C U; i.e., each
of the vectors w; belongs to U. This can be done, for example, by writing them as
linear combinations of u; and uy (again solving a system of linear equations):
w1 = U1 — U9, W9 = —U1 — U9, W3 = 2U1 — U2.
[4 marks]. Standard exercise.
9 marks in total for Question 1
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2. A group is a set G together with a binary operation * such that: (G1) for all

91,92 € G, g1 * g2 € G; (G2) for all g1, 92,95 € G, g1 * (g2 % g3) = (g1 * g2) * g3; (G3) there

exists an element e € G such that, for all g € G, ex g = gx e = g; (G4) for every g € G,

there exists g7! € G such that gx g ' =g ' xg=ce.

[2 marks]. Standard definition from lectures.

If G, H are groups, then a map ¢ : G — H is a homomorphism if, for all g, g9 € G,

©(g1 *1 g2) = ©(g1) *2 ©(g2), where #; is the group law in G and x5 is the group law in H.

[1 marks]. Standard definition from lectures.

The map ¢ is injective if, for all g1,92 € G, ¢(g1) = ©(g2) = g1 = g2. The map ¢ is
surjective if, for all h € H, there exists g € G such that ¢(g) = h.

[2 marks]. Standard definitions from lectures.

Let x,y be arbitrary non-zero real numbers. We have

pry) = (xoy (I2)2> = <x0y x20y2> = (g ;) (‘g yOQ) = p()e(y).

Hence ¢ is a homomorphism.
[2 marks]. Seen somewhat similar in ezercises.
If p(z) = ¢(y), then (comparing the top left entries), we must have = = y, so ¢ is
injective. The map ¢ is clearly not surjective, as e.g.

e # (1 o)

[2 marks]. Seen similar in exercises.
9 marks in total for Question 2

for all z € G.
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(a) A function ¢ : G — G is an isomorphism if ¢ is a homomorphism, injective and
surjective.
[2 marks]. Standard definition from lectures.
(b) The composition ¢ o ¢ of two isomorphisms is again an isomorphism. Indeed, we
see that the composition is still a homomorphism:

(W(v1va)) = @(W(v1)Y(v2)) = w(P(v1)) (P (v2)).

If p(1p(v1)) = @(1(v2)), then 1(vy) = ¥ (ve) by injectivity of ¢, and thus v, = vy
by injectivity of 1. So ¢ o 1) is injective.

Let w € V. Then by surjectivity of ¢, there is v; € V such that ¢(v;) = w. By
surjectivity of ¢, there is v € V such that ¥ (v) = v;. Then (¢ (v)) = ¢(v1) = w,
S0 ¢ o 1) is surjective.

[4 marks].

Associativity is clearly satisfied. The neutral element is given by the identity map
¢(v) = v. The inverse element of ¢ is given by its inverse ¢ 1.

[3 marks]. Similar examples seen in exercises and lecture.

9 marks in total for Question 3
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(a) Let ey, eq, €3, ¢4 be the standard basis vectors of R*. Then
e = (1,0,4,0) =161+ 1

so that the first column of the matrix should have entries —1,0,4,0. Proceeding
similarly for ey, e and ey, we get

-1 00 O
0 30 0
M=14 03 4
0 00 -1
[3 marks] Seen similar in exercises.
(b) We now compute
A+1) 0 0 0
o =3 o 0
det(A\ — M) = 4 0 (A—3) 4
0 0 0 (A+1)
A=3) 0 0
=A+1)] 0 (A=3) -4 |=A+1)*(A-3)~
0 0 (A+1)

So the eigenvalues of A are —1 and 3.

[3 marks] Standard exercise.
To find the eigenvectors corresponding to these eigenvalues, we must solve the
equations (I + M)v =0 and (3] — M)v =0:

0000 0100
0400 101 1
404 4] " looo ol
0000 0000
4 00 0 1000
0 00 0 000 1
400 -4 loo0 00
0 00 4 0000

So we see that the eigenvectors with eigenvalue —1 are of the form (A, 0, p, —A — 1)
and those with eigenvalue 3 are of the form (0, A, p, 0).

[2 marks] Standard exercise.
(¢) In particular, the matrix M is diagonalizable, since we can find a basis of four lin-

early independent eigenvectors, e.g. ((1,0,0,—1),(0,0,1,—1),(0,1,0,0),(0,0,1,0)).
[2 marks] Standard ezercise.
10 marks in total for Question 4
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5.  We compute:

flu,u) =2-2+2-1-241-1=09,

Flupug) =2- (=) 4+2-1-(=1)+1-2= -2,
Flug,uy) = (=1)-242-2-24+2.1=38,
Flug,ug) = (=1) - (=1)+2-2- (=1)+2-2 =1,

[3 marks]
Similarly,
Flo,v1)=1-142-3-1+3-3 =16,
flv,)=1-04+2-3-0+3-5=15,
Flvg,v1) =0-142-5-1+5-3 =25,
f(va,v9) =0-04+2-5-0+5-5=25,
: . 16 15
So the matrix of f wrt vy, v9 is B = (25 25).
[3 marks]

To compute the change-of-basis matrix, we write v; as linear combinations of the ;.
(Again, this will involve solving a system of linear equations.)

(1,3)=1-(2,1)+1-(-1,2)
(0,5)=1-(2,1)+2-(-1,2).
11
1 2)
Alternatively, we can obtain P as the composition of change-of-basis matrices from the
given bases to the standard basis:

r=(02) 65 (D695 )

Finally, it is easily checked that

rar=( () )
[3 marks].

9 marks in total for Question 5
Whole question: seen similar in exercises.

So the change-of-basis matrix is P =
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6.  The rank of ¢ is the dimension of Im(p). The nullity of ¢ is the dimension of ker(y).
[1 mark]|. Standard definitions from lectures.
The rank and nullity theorem states that

dim V' = rank(y) + nullity(¢).

[1 mark]|. Standard theorem from lectures.
For v; = a2 + bix + ¢ and vy = asx? + byx + ¢, and X\, i € R, we have

©(Avy + pg)

= ((Aay + pag + Ay + pea, —2(Aey + pee) + Aby + pby — 2(Aay + pas), 3(Aby + ubs))

= )\(al + C1, —201 + b1 — 2@1, 3[)1) + /L(CLQ + Co, —202 + b2 - 2@2, Sbg) = )\(,0(1)1) + /JQO(UQ).
Thus ¢ is linear.

[2 marks]. Standard exercise.

There are several ways of determining the rank and nullity; usually we would want to
use the rank and nullity theorem. For example, consider an arbitrary polynomial v =
az? 4+ bxr +cin V. Then v € ker(yp) if and only if

a+c=0, —2c+b—2a=0 and 3b=0,
which is clearly the case if and only if b =0 and a = —c. So
ker(p) = {az® —a: a € R}.

So nullity(¢) = 1. Consequently rank(y) = dim(V') — nullity(p) =3 — 1 = 2.
[4 marks]. Standard exercise.
Since nullity(¢) # 0, ¢ is not an isomorphism.
[1 mark]. Standard ezercise.
(Remark: We have Im(y¢) = {(a,b,¢) : 6a + 3b = c}.)
9 marks in total for Question 6
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SECTION B
7.  The matrix of the quadratic form

q(x,y,2) = 3% — y2 — 322 + 8xz.

with respect to the standard bases is

3 0 4
A={(0 -1 0
4 0 =3

[3 marks].
We can find a basis with respect to which ¢ is diagonal by finding a basis consisting of
orthogonal eigenvectors of A. The characteristic polynomial is

A=3) 0 4
det(A — A) = 0 (A+1) 0
—4 0 (A+3)

A1) ‘ (()\__43) ()\143)) ‘

= (
=(A+1)(A\*—9—16)
=N+ 1)(A=5)(A+5),

so the eigenvalues are —1, 5 5 Solving the corresponding linear equations gives eigen-

vectors (0,1,0), (2,0,1) and (1,0, —2). The desired matrix P is thus given by
0 2 1
P=11 0 0
0 1 -2
The desired diagonal matrix is
-1 0 0
=P'AP=[0 25 0
0 0 -—25

[9 marks].

The diagonal matrix has full rank, so the rank of ¢ is 3. The signature is the number

of positive entries minus the number of negative entries, and is thus —1. The surface is a
hyperboloid of two sheets.

[3 marks].

15 marks in total for Question 7 Seen somewhat similar in exercises.
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(a) Statement (ii) is true. Indeed, we have
b=ceb=(ata)b=a""(ab) = a (ac) = (a 'a)c = ec = c.

[2 marks]. Seen in Lectures.
Statement (i) follows from (ii), letting ¢ = e. (Alternatively, it can be proved in
the same way as (ii).)

[2 marks]. Seen in Lectures.

Statement (iii) is false. For example, let G = Cy, and let a be the unique non-
identity element. Then a? = e, but a # e.

[3 marks]. Unseen.

(b) First of all, since ED = E, D must be the identity element of the group. So we can
fill in the corresponding column and row:

A B C

MO Q®E > «
0 P 0 0
~w ™ Q0
o QP
mOQ® =0
Rl es JRCI - e

Every line and column in the group table must contain each element. The second
column is only missing elements A and E; however, the last row already contains
an F. So we can complete this column:

RS~ R I e~
soE QoW
NG IRCII N
mO Qw0
RCH ea IR e

HIO QW > x

To continue, we can observe, for example, that BA = BEB = AB = D. This
allows us to fill in the second row.

HOQW®@> x
IRl W

pivv RSN @R w]lve
~ QA
O QWO
Kl IR g je!
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It is now easy to fill in the rest of the group table:

*IA B C D E
AlE D B A C
B/D C E B A
C/B EACD
D/A B C D E
EIC A D E B

[5 marks]. Seen similar in exercises.
(¢) The cyclic group C5 with five elements has the same group table.
[3 marks]. Unseen.

15 marks in total for Question 8
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9. Let V=R?»*? and let

U:—{(a b) :b—l—c—Oanch—d—O}.
c d

W::{(Z Z) cb+c=0, a+c:()anda:b}.

Let v; = (Zl 21) and vy = ((CL2 22> be elements of U. Then
1 1 2 do

. )\al + Has )\bl + ,ubg
Av e = (Acl + ey Ay + pdy)

and we see that
(Acr 4 peg) + (Ady + pde) = MNer +dy) + p(ca +de) =A-04+p-0=0, and
(Aar + paz) + (Ady + pda) = a1 + dv) + p(az + da) = 0;
i.e., v1 + v € U. Thus U is a subspace of V. [4 marks].
If (CCL b) € U, then we have d = —a and ¢ = —b, so we can write

d
a b a b 1 0 0 1
()= (% 2)=a(s ) ( 5 o)
so the two vectors
1 0 0 1
0 —-1/’\—-1 0

form a spanning set of U. Since they are also clearly linearly independent, they form a
basis of U, and thus the dimension of U is two.

Similarly, the vectors
1 1 00
-1 0)7\0 1

form a basis for W, and the dimension of W is also two.
[4 marks].

Since the vector _11 _11 belongs to both U and W, we see that the dimension of
UNW is at least 1; since U # W, the dimension is also at most 1. In particular, the above
vector forms a basis for U N

(Alternatively, we can solve the equations in the definitions of U and W simultaneously,
and obtain b = a, ¢ = —a and d = —a.) [3 marks].

We thus have dim(U + W) = dimU + dim W — dim(U NW) =242 —1 = 3. A basis
for U + W is given by the three vectors

(b 5)- (50 ().



SOLUTIONS FOR MATH244 (SEPTEMBER. 2006) 11

which are clearly linearly independent.
[3 marks].
Since U N W # {0}, V is not the direct sum of U and W.
[1 mark].
15 marks in total for Question 9 Seen similar in exercises
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10.
(a) We have

ker(p) ={(z,y,2) : y = —4x,z = 2z}
= {(z, —4z,2z) : x € R}.

A basis for this space is given by (1, —4,2), so nullity(y) = 1.
[3 marks]. Standard exercise.

In particular, we see that rank(p) = 3 — 1 = 2, so we only need to find two
linearly independent vectors in the image of ¢. Two such vectors are given by
v1 = (0,1,0) = (0,1,0) and vy = ©(0,0,1) = (0,0,1).

(Any basis of Im(y) = {(0,y, 2) : y, 2 € R} gives a correct answer.)

[3 marks]. Standard exercise.

(b) We have already seen that the vectors {(0,y, 2) : y, 2 € R} are eigenvectors of ¢ with

eigenvalue 1, and that the vectors (z, —4x,2z) are eigenvectors with eigenvalue 0.

Since the dimensions of these spaces add up to three, these are all the eigenvectors
and eigenvalues of .

(Alternatively, write down the matrix of ¢ with respect to the standard basis,
and find all the eigenvectors and eigenvalues by solving the characteristic equation,
etc.) [3 marks].

(c) Since we have found three linearly independent eigenvectors, ¢ is diagonalizable, so
the Jordan normal form of ¢ is diagonal. A basis which diagonalizes ¢ is given by
any basis consisting of three linearly independent eigenvectors; e.g.

B =((1,-4,2),(0,1,0), (0,0, 1)).

[3 marks].
It is now easy to compute the matrix A, and verify that indeed
000
A=10 1 0],
0 01

as required.
[3 marks]. Similar example seen on exercise sheet.

15 marks in total for Question 10



