SECTION A **1.** The set $\{v_1, \ldots v_k\}$ spans V if every $v \in V$ can be written as a linear combination $v = \lambda_1 v_1 + \ldots \lambda_k v_k$, for some $\lambda_1, \ldots, \lambda_k \in \mathbf{R}$. [2 marks]. Definition from lectures. First put u_1, u_2, u_3 as the rows of a matrix, and use row operations to reduce to echelon form: $$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 0 \\ 2 & 0 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & -2 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$ Therefore the space U is spanned by $\{(1,0,-2),(0,1,1)\}$ which are clearly linearly independent and so give a basis for U. Similarly put w_1, w_2, w_3 as the rows of a matrix, and use row operations to reduce to echelon form: $$\begin{pmatrix} 1 & -1 & -3 \\ 2 & -1 & -5 \\ 1 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -3 \\ 0 & 1 & 1 \\ 0 & 3 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$ Therefore the space W also has the same basis as U, namely: $\{(1,0,-2),(0,1,1)\}$, and so U=W. [7 marks]. Seen similar in exercises. 9 marks in total for Question 1 **2.** A group is a set G together with a binary operation * such that: (1) for all $g_1, g_2 \in G$, $g_1 * g_2 \in G$; (2) for all $g_1, g_2, g_3 \in G$, $g_1 * (g_2 * g_3) = (g_1 * g_2) * g_3$; (3) there exists an element $e \in G$ such that, for all $g \in G$, e * g = g * e = g; (4) for every $g \in G$, there exists $g^{-1} \in G$ such that $g * g^{-1} = g^{-1} * g = e$. If G, H are groups, then a map $\phi : G \to H$ is a homomorphism if, for all $g_1, g_2 \in G$, $\phi(g_1 *_1 g_2) = \phi(g_1) *_2 \phi(g_2)$, where $*_1$ is the group law in G and $*_2$ is the group law in G. The kernel of G is the set t [4 marks]. Standard definitions from lectures. For any $\begin{pmatrix} a_1 & b_1 \\ 0 & d_1 \end{pmatrix}$, $\begin{pmatrix} a_2 & b_2 \\ 0 & d_2 \end{pmatrix}$ in G, we have $$\phi\Big(\begin{pmatrix} a_1 & b_1 \\ 0 & d_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & d_2 \end{pmatrix}\Big) = \phi\Big(\begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 d_2 \\ 0 & d_1 d_2 \end{pmatrix}\Big) = (a_1 a_2)(d_1 d_2).$$ $$\phi\left(\begin{pmatrix} a_1 & b_1 \\ 0 & d_1 \end{pmatrix}\right)\phi\left(\begin{pmatrix} a_2 & b_2 \\ 0 & d_2 \end{pmatrix}\right) = (a_1d_1)(a_2d_2) = (a_1a_2)(d_1d_2), \text{ also.}$$ Hence, ϕ is a homomorphism. We also have: $\binom{a\ b}{0\ d} \in \ker \phi \iff \phi\Bigl(\binom{a\ b}{0\ d}\Bigr) = 1 \iff ad = 1 \iff d = 1/a.$ So kernel of $$\phi = \{ \begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix} : a, b \in \mathbf{R}, a \neq 0 \}.$$ Finally, the image of ϕ is all of H, since any nonzero $r \in \mathbf{R}$ is (for example) $\phi\left(\begin{pmatrix} r & 0 \\ 0 & 1 \end{pmatrix}\right)$. [5 marks]. Seen somewhat similar in exercises. 9 marks in total for Question 2 **3.** Let $e_1 = 1$, $e_2 = x$, $e_3 = x^2$. Then $L(e_1) = L(1) = x^2 = 0 \cdot e_1 + 0 \cdot e_2 + 1 \cdot e_3$, so that the first column of the matrix should have entries 0, 0, 1. Similarly, $L(e_2) = 0 \cdot e_1 + (-1) \cdot e_2 + 0 \cdot e_3$ and $L(e_3) = 1 \cdot e_1 + 0 \cdot e_2 + 0 \cdot e_3$, so that the matrix is: $$M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$ [3 marks] If we now compute $\det(\lambda I - M) = (\lambda - 1)(\lambda + 1)^2$, we see that the possible eigenvalues are $\lambda = 1, -1$. When $\lambda = 1$, a vector $v = a + bx + cx^2$ is an eigenvector with eigenvalue 1 iff $L(v) = 1 \cdot v$ iff $c - bx + ax^2 = a + bx + cx^2$ iff a = c and b = -b iff a = c and b = 0 iff v is of the form $a + ax^2$ ($a \neq 0$). When $\lambda = -1$, a vector $v = a + bx + cx^2$ is an eigenvector with eigenvalue -1 iff $L(v) = (-1) \cdot v$ iff $c - bx + ax^2 = -a - bx - cx^2$ iff a = -c iff v is of the form $a + bx - ax^2$ (a, b not both 0). [6 marks] Seen similar in exercises.9 marks in total for Question 3 4. (i) First note that $\sigma_{\ell}, \sigma_{m}, \rho_{A,2\alpha}$ all leave A unchanged, so that $\sigma_{m}\sigma_{\ell}(A) = A = \rho_{A,2\alpha}(A)$. Now, let B be any point on ℓ distinct from A, let $B' = \sigma_{m}(B)$ and let n be the line through A and B'. Let the point Q be the intersection of m and the line BB'. Now, |AQ| = |AQ| and |BQ| = |B'Q| and angle AQB equals angle AQB' equals $\pi/2$. So, triangle AQB is congruent to AQB', giving that |AB| = |AB'| and angle QAB' is the same as angle BAQ, namely: α . It follows that $B' = \rho_{A,2\alpha}(B)$. Further, $\sigma_{\ell}(B) = B$, since B lies on ℓ . So, we've shown that $\sigma_{m}\sigma_{\ell}(B) = B' = \rho_{A,2\alpha}(B)$. Similarly, let k be the line through A at angle $-\alpha$ from ℓ , and let C be any point on k distinct from A. By a similar argument to above, $\sigma_{m}\sigma_{\ell}(C) = \rho_{A,2\alpha}(C)$. This shows that $\sigma_{m}\sigma_{\ell}$ and $\rho_{A,2\alpha}$ agree on the three non-collinear points A, B, C. Since these are isometries, and since any isometry is determined by its effect on 3 non-collinear points, we conclude that $\sigma_{m}\sigma_{\ell} = \rho_{A,2\alpha}$, as required [it helps also to draw a quick diagram of the above]. [5 marks]. Bookwork from lectures. (ii) Let ℓ be the line through B at angle $-\beta/2$ from m. By part (i) we have $\sigma_m \sigma_\ell = \rho_{B,2(\beta/2)} = \rho_{B,\beta}$, as required. Similarly, let n be the line through C at angle $\gamma/2$ from m. By part (i) again we have $\sigma_n \sigma_m = \rho_{C,2(\gamma/2)} = \rho_{C,\gamma}$, as required. Hence, $\rho_{C,\gamma} \rho_{B,\beta} = (\sigma_n \sigma_m)(\sigma_m \sigma_\ell) = \sigma_n(\sigma_m \sigma_m)\sigma_\ell = \sigma_n \sigma_\ell$. Again using part (i), this must a rotation about the point of intersection of ℓ and n through twice the angle from ℓ to n (note that the given fact, $\beta \neq -\gamma$, guarantees that ℓ and n are not parallel). [5 marks]. Broadly similar to bookwork from lectures. 10 marks in total for Question 4 2MP44 5 11 **5.** We compute: $f(u_1, u_1) = 1 \cdot 1 - 1 \cdot 1 + 1 \cdot 1 = 1$, $f(u_1, u_2) = 1 \cdot 0 - 1 \cdot (-1) + 1 \cdot (-1) = 0$, $f(u_2, u_1) = 0 \cdot 1 - 0 \cdot 1 + (-1) \cdot 1 = -1$, $f(u_2, u_2) = 0 \cdot 0 - 0 \cdot (-1) + (-1) \cdot (-1) = 1$. So, the matrix of f wrt u_1, u_2 is $A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$. [3 marks] Similarly, $f(v_1, v_1) = 2 \cdot 2 - 2 \cdot 2 + 2 \cdot 2 = 4$, $f(v_1, v_2) = 2 \cdot 0 - 2 \cdot 1 + 2 \cdot 1 = 0$, $f(v_2, v_1) = 0 \cdot 2 - 0 \cdot 2 + 1 \cdot 2 = 2$, $f(v_2, v_2) = 0 \cdot 0 - 0 \cdot 1 + 1 \cdot 1 = 1$. So, the matrix of f wrt u_1, u_2 is $B = \binom{4 \ 0}{2 \ 1}$. [3 marks] Now, note that $v_1=2\cdot u_1+0\cdot u_2$, so that "2" and "0" are the entries of the first column of the change-of-basis matrix. Similarly, $v_2=0\cdot u_1+(-1)u_2$, so that "0" and "-1" are the entries of the second column of the change-of-basis matrix. This gives $P=\begin{pmatrix} 2&0\\0&-1\end{pmatrix}$ as the required change-of-basis matrix. Finally, check that: $P^TAP=\begin{pmatrix} 2&0\\0&-1\end{pmatrix}^T\begin{pmatrix} 1&0\\0&-1\end{pmatrix}\begin{pmatrix} 2&0\\0&-1\end{pmatrix}=\begin{pmatrix} 2&0\\0&-1\end{pmatrix}\begin{pmatrix} 2&0\\0&-1\end{pmatrix}=\begin{pmatrix} 2&0\\0&-1\end{pmatrix}\begin{pmatrix} 2&0\\0&-1\end{pmatrix}=B$, as required. [3 marks]. Whole question: seen similar (once) in exercises. 9 marks in total for Question 5 **6.** A matrix M is orthogonal if $MM^T = I$. Let $P = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$ and $Q = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}$. Then $$(PQ)^{T} = \begin{pmatrix} a_{1}a_{2} + b_{1}c_{2} & a_{1}b_{2} + b_{1}d_{2} \\ c_{1}a_{2} + d_{1}c_{2} & c_{1}b_{2} + d_{1}d_{2} \end{pmatrix}^{T} = \begin{pmatrix} a_{1}a_{2} + b_{1}c_{2} & c_{1}a_{2} + d_{1}c_{2} \\ a_{1}b_{2} + b_{1}d_{2} & c_{1}b_{2} + d_{1}d_{2} \end{pmatrix}$$ $$= \begin{pmatrix} a_{2} & c_{2} \\ b_{2} & d_{2} \end{pmatrix} \begin{pmatrix} a_{1} & c_{1} \\ b_{1} & d_{1} \end{pmatrix} = Q^{T}P^{T}.$$ [4 marks] I is orthogonal, since $II^T=I$. If P,Q are orthogonal then $PP^T=I$ and $QQ^T=I$, so that $(PQ)(PQ)^T=(PQ)Q^TP^T=P(QQ^T)P^T=PIP^T=PP^T=I$, so that PQ is also orthogonal. Also, if P is orthogonal, then $P^T=P^{-1}$, so that $P^{-1}(P^{-1})^T=P^{-1}(P^T)^T=P^{-1}P=I$, so that P^{-1} is also orthogonal. Hence, the set of orthogonal 2×2 matrices contains the identity, is closed, contains inverses, and is associative (since matrix multiplication is always associative), and so is a group. [5 marks]. Seen on exercise sheet. 9 marks in total for Question 6 2MP44 6 11 ## SECTION B 7. In U, taking a = b = d = 0 gives that $0 \in U$. If $u = a + bx + bx^2 + dx^3 \in U$ and $\lambda \in \mathbf{R}$, then $\lambda u = \lambda(a + bx + bx^2 + dx^3) = (\lambda a) + (\lambda b)x + (\lambda b)x^2 + (\lambda d)x^3 \in U$. Also, if $u_1 = a_1 + b_1x + b_1x^2 + d_1x^3$ and $u_2 = a_2 + b_2x + b_2x^2 + d_2x^3$ are in U then $u_1 + u_2 = (a_1 + b_1x + b_1x^2 + d_1x^3) + (a_2 + b_2x + b_2x^2 + d_2x^3) = (a_1 + a_2) + (b_1 + b_2)x + (b_1 + b_2)x^2 + (d_1 + d_2)x^3 \in U$. Hence U is a subspace of V. Proof that W is a subspace of V is almost identical. [3 marks]. Standard. Typical member of U is $a+bx+bx^2+dx^3=a\cdot 1+b\cdot (x+x^2)+d\cdot x^3$, so that $1,x+x^2,x^3$ span U. Also, $\lambda_1\cdot 1+\lambda_2\cdot (x+x^2)+\lambda_3\cdot x^3=0\Rightarrow \lambda_1=\lambda_2=\lambda_3=0$, so that $1,x+x^2,x^3$ are linearly independent. Hence this gives a basis for U and so U has dimension 3. Similarly, W has basis $\{1,x-x^2,x^3\}$ and so W also has dimension 3. [4 marks]. Standard. For $a+bx+cx^2+dx^3$ to be in $U\cap W$, we must have c=b (to be in U) and c=-b (to be in W); but $b=-b\iff b=0$. So, $U\cap W=\{a+dx^3:a,d\in R\}$. Clearly (shown as above) 1, x^3 is a basis for $U\cap W$ and so $U\cap W$ has dimension 2. [3 marks]. Harder, but seen similar. Note that, any $a+bx+cx^2+dx^3$ in V can be written as, for example, $(\frac{a}{2}+\frac{b+c}{2}x+\frac{b+c}{2}x^2+\frac{d}{2}x^3)+(\frac{a}{2}+\frac{b-c}{2}x-\frac{b-c}{2}x^2+\frac{d}{2}x^3)$, where the first term of this sum is in U and the second term is in W. This means that any member of V can be written as (member-of-U) + (member-of-W), that is: U+W=V, which has dimension 4. [Alternatively: note that (1,0,0,0)=(1,0,0,0)+(0,0,0,0), (0,1,1,0)=(0,1,1,0)+(0,0,0,0), (0,1,-1,0)=(0,0,0,0)+(0,1,-1,0) and (0,0,0,1)=(0,0,0,0)+(0,0,0,1) are four linearly independent members of U+W, so that U+W has dimension at least 4, and is a subspace of the 4-dimensional space V, giving that U+W=V]. [3 marks]. Harder. Unseen. Finally note that, since $\dim(U \cap W) = 2$, we do not have $U \cap W = \{0\}$, and so $V = U \oplus W$ (note that the definition of $V = U \oplus W$ is that both V = U + W and $U \cap W = \{0\}$). [2 marks]. Seen similar in exercises (once). 15 marks in total for Question 7 2MP44 7 11 **8.** (i) The rank of ϕ is the dimension of the image of ϕ . The nullity of ϕ is the dimension of the kernel of ϕ . That rank & nullity theorem states that $rank(\phi) + nullity(\phi) = \dim(V)$. [3 marks] From lectures. (ii) Let A be the matrix of F wrt the basis E_1 , E_2 , E_3 , E_4 . We have $F(E_1) = \binom{1\ 0}{3\ 0} = 1 \cdot E_1 + 0 \cdot E_2 + 3 \cdot E_3 + 0 \cdot E_4$, so that the entries of the first column of A are $\frac{1}{3}$. Similarly, we have $F(E_2) = \binom{0\ 1}{0\ 3} = 0 \cdot E_1 + 1 \cdot E_2 + 0 \cdot E_3 + 3 \cdot E_4$, which gives the entries of the second column of A. Similarly $F(E_3) = \binom{2\ 0}{6\ 0} = 2 \cdot E_1 + 0 \cdot E_2 + 6 \cdot E_3 + 0 \cdot E_4$, which gives the entries of the third column of A. Finally, $F(E_4) = \binom{0\ 2}{0\ 6} = 0 \cdot E_1 + 2 \cdot E_2 + 0 \cdot E_3 + 6 \cdot E_4$, which gives the entries of the fourth column of A. So, A is: $\binom{1\ 0\ 2\ 0}{3\ 0\ 6\ 0} \cdot \binom{0\ 1\ 0\ 2\ 0}{0\ 3\ 0\ 6\ 0}$. [3 marks]. Seen similar in exercises. Applying column operations to A as follows: $C_3 \to C_3 - 2C_1$ and $C_4 \to C_4 - 2C_2$ gives a matrix which is the same as A, except with all entries zero in the third and fourth columns (and is in column echelon form). The first two columns of A give a basis for the image of F, that is, a basis for the image of F is: $1 \cdot E_1 + 0 \cdot E_2 + 3 \cdot E_3 + 0 \cdot E_4$ and $0 \cdot E_1 + 1 \cdot E_2 + 0 \cdot E_3 + 3 \cdot E_4$, that is to say, a basis for the image of F is: $\{\binom{1}{3} \binom{0}{0}, \binom{0}{0} \binom{1}{0} \binom{0}{0}, \binom{0}{0} \binom{1}{0} \binom{0}{0} \binom{1}{0} \binom{0}{0} \binom{1}{0} \binom{0}{0} \binom{1}{0} \binom{0}{0} \binom{1}{0} \binom{0}{0} \binom{1}{0} \binom{0}{0} \binom{0}{0} \binom{1}{0} \binom{0}{0} \binom{0}{0} \binom{1}{0} \binom{0}{0} \binom{0}{0} \binom{1}{0} \binom{0}{0} \binom{$ [3 marks]. Unseen. Solving for $A {a \choose b \choose d} = {0 \choose 0 \choose 0}$, we first apply row operations to A as follows: $R_3 \to 3R_1$ and $R_4 \to R_4 - 3R_2$ gives a matrix which is the same as A except with all entries zero in the last two rows (and is in row echelon form). This gives only two independent equations: a+2c=0 and b+2d=0, so take c,d as the two free parameters so that the general solution for a,b,c,d is: -2c,-2d,c,d, that is: $-2cE_1 - 2dE_2 + cE_3 + dE_4$. The typical member of the kernel of F is then: ${-2c-2d \choose c-d} = c{-20 \choose 10} + d{0-2 \choose 01}$. So, ${-20 \choose 10}, {0-2 \choose 01}$ span the kernel of F and are clearly linearly independent. So, $\{{-20 \choose 10}, {0-2 \choose 01}\}$ is a basis for the kernel of F. [Alternative Method: we could have found a basis for the kernel of F directly from the definition of F (without needing A) by observing that ${a \choose cd} \in \ker F \iff F({ab \choose cd}) = {0 \choose 00} \iff F({ab \choose cd}) = {a+2c \choose 3a+6c 3b+6d} \iff a+2c=0$, $b+2d=0 \iff {ab \choose cd} = c{-20 \choose 10} + d{0-2 \choose 01}$, again giving $\{{-20 \choose 10}, {0-2 \choose 01}\}$ as a basis for the kernel of F.] Since a basis for the image of F has two elements, it follows that $\operatorname{rank}(F) = 2$. Since a basis for the kernel of F has two elements, it follows that $\operatorname{nullity}(F) = 2$. Also, $\dim(V) = 4$, since $\{E_1, E_2, E_3, E_4\}$ is a basis for V. So, the rank & nullity theorem is verified in this case as: 2 + 2 = 4. [6 marks]. Seen (somewhat) similar in exercises. 15 marks in total for Question 8 **9.** Taking the standard matrix A for q, we form (A|I). We then apply to A: $R_2 \to R_2 - 2R_1$, $R_3 \to R_3 + 3R_1$, $C_2 \to C_2 - 2C_1$, $C_3 \to C_3 + 3C_1$ as step one and $R_3 \to R_3 - 2R_2$, $C_3 \to C_3 - 2C_2$ as step two (with only the column operations being applied to I) to give: $$(A|I) = \left(\begin{smallmatrix} 1 & 2 & -3 & | & 1 & 0 & 0 \\ 2 & 5 & -4 & | & 0 & 1 & 0 \\ -3 & -4 & 8 & | & 0 & 0 & 1 \end{smallmatrix}\right) \sim \left(\begin{smallmatrix} 1 & 0 & 0 & | & 1 & -2 & 3 \\ 0 & 1 & 2 & | & 0 & 1 & 0 \\ 0 & 2 & -1 & | & 0 & 0 & 1 \end{smallmatrix}\right) \sim \left(\begin{smallmatrix} 1 & 0 & 0 & | & 1 & -2 & 7 \\ 0 & 1 & 0 & | & 0 & 1 & -2 \\ 0 & 0 & -5 & | & 0 & 0 & 1 \end{smallmatrix}\right) = (D|P).$$ [7 marks]. Then $D=P^TAP$, and $A=Q^TDQ$, where $Q=P^{-1}=\begin{pmatrix} \frac{1}{0} & \frac{2}{1} & -3\\ 0 & 0 & 1 \end{pmatrix}$. New variables: $\begin{pmatrix} \frac{r}{s}\\ t \end{pmatrix}=Q\begin{pmatrix} \frac{x}{y}\\ z \end{pmatrix}$ (that is, we are changing to new variables r,s,t, where r=x+2y-3z, $s=y+2z,\ t=z$) transform q(x,y,z) into $\tilde{q}(r,s,t)=r^2+s^2-5t^2$. [3 marks] The rank of q is 3 (which is the number of nonzero entries of D), and the signature of q is the number of positive entries of D minus the number of negative entries = 2 - 1 = 1. The surface q(x, y, z) = 25 becomes $r^2 + s^2 - 5t^2 = 25$, in r, s, t coordinates, which is a hyperboloid of one sheet. The sketch should look identical to the standard sketch of a hyperboloid of one sheet, except that the x, y, z axes should be labelled r, s, t (if drawn it wrt r, s, t). [If drawn wrt x, y, z then it should be made clear in the diagram that the axes of the surface are: y = z = 0, x + 2y = z = 0, x + 2y - 3z = y + 2z = 0]. [5 marks]. Whole question: seen similar in exercises. 15 marks in total for Question 9 **10.**(i) Suppose that e_1 and e_2 were both (2-sided) identity elements. Then $e_1 * e_2 = e_1$, since e_2 is an identity. Similarly, $e_1 * e_2 = e_2$. Hence $e_1 = e_2$. [2 marks]. Seen in lectures. Let $\alpha * \beta = e$. Let δ be the (2-sided) inverse of α , and multiply both sides of the equation on the left by δ . Then $\delta * (\alpha * \beta) = \delta * e = \delta$ (since e is identity), so that $(\delta * \alpha) * \beta = \delta$ (assoc.) and so $\beta = \delta$. Now multiply both sides on the right by α , giving $\beta * \alpha = \delta * \alpha = e$. [2 marks]. Unseen (ii) Suppose $\alpha * \beta = \alpha * \gamma$. Multiply both sides on the left by δ , the inverse of α . Then $\delta * (\alpha * \beta) = \delta * (\alpha * \gamma)$, giving $(\delta * \alpha) * \beta = (\delta * \alpha) * \gamma$ [by associativity], and so $e * \beta = e * \gamma$, finally giving: $\beta = \gamma$, as required. The values of $\alpha * g$, as g runs through all the members of the group give the ' α ' row of the group table; if two of these were the same, we would have $\alpha * \beta = \alpha * \gamma$ for distinct $\beta \neq \gamma$, contradicting the previous result. Similarly, $\beta * \alpha = \gamma * \alpha \Rightarrow \beta = \gamma$ gives that no element can be repeated in the same column. [4 marks]. Seen on exercise sheet. (iii) From the already provided entry B * F = B, we deduce (after multiplying both sides on left by the inverse of B) that F is the identity element. This allows us to fill in the bottom row as ABCDEF and similarly the right hand column. Having done this, the 'no-element-repeated-in-the-same-row-or-column' rule excludes A,B,C,D,E from D * E and so the only possibility for D * E is F. But F is the identity element, so by the second part of (i), we have E * D = F, also (i.e. D must be the 2-sided inverse of E). At this point we have: | * | A | В | С | D | \mathbf{E} | F | |--------------|---|---|---|-----------------------|--------------|--------------| | A | F | ? | ? | ? | В | Α | | В | ? | ? | ? | ? | \mathbf{C} | В | | \mathbf{C} | ? | D | ? | ? | A | \mathbf{C} | | D | ? | ? | ? | \mathbf{E} | \mathbf{F} | D | | \mathbf{E} | ? | ? | В | F | ? | \mathbf{E} | | F | A | В | С | ?
?
E
F
D | \mathbf{E} | F | From now on, we can fill in all the remaining entries by using only the 'noelement-repeated-in-the-same-row-or-column' rule. For example, this forces E*Eto be D. The following gives a possible order in which the remaining 16 entries can be fixed using this rule. 2MP44 10 11 | * | A | В | \mathbf{C} | D | \mathbf{E} | F | |--------------|-------------------------|----|--------------|--------------|--------------|--------------| | A | F | 12 | 16 | 4 | В | A | | В | 11 | 13 | 15 | 3 | \mathbf{C} | В | | \mathbf{C} | F
11
10
9
6 | D | 14 | 2 | A | \mathbf{C} | | D | 9 | 8 | 5 | \mathbf{E} | \mathbf{F} | D | | \mathbf{E} | 6 | 7 | В | \mathbf{F} | 1 | \mathbf{E} | | F | A | В | \mathbf{C} | D | \mathbf{E} | F | The final table must then be * | A B C D E F | * | Α | В | С | D | \mathbf{E} | F | |--------------|---|---------------------------|---|---|---|---| | 4 | F | \mathbf{E} | D | С | В | Α | | 3 | D | \mathbf{F} | \mathbf{E} | Α | \mathbf{C} | В | | \mathbb{C} | Ε | D | F | В | A | \mathbf{C} | |) | В | \mathbf{C} | A | \mathbf{E} | \mathbf{F} | D | | ₹) | С | A | В | \mathbf{F} | D | \mathbf{E} | | F | Α | В | С | D | \mathbf{E} | F | | | * | * A F B D C E D B E C F A | * A B A F E B D F C E D D B C E C A F A B | * A B C A F E D B D F E C E D F D B C A E C A B F A B C | * A B C D A F E D C B D F E A C E D F B D B C A E E C A B F F A B C D | * A B C D E A F E D C B B D F E A C C E D F B A D B C A E F E C A B F D F A B C D E | [7 marks]. Seen similar on Ex Sheet (but this one is harder). 15 marks in total for Question 10 2MP44 11 11