SECTION A 1. Say what it means for $\{v_1, \ldots, v_k\}$ to span a vector space V. Let U be the subspace of \mathbf{R}^3 spanned by $$u_1 = (1, 1, -1), u_2 = (1, 2, 0), u_3 = (2, 0, -4).$$ Let W be the subspace of \mathbb{R}^3 spanned by $$w_1 = (1, -1, -3), w_2 = (2, -1, -5), w_3 = (1, 2, 0).$$ Show that U = W. [9 marks] 2. Define the terms: group, homomorphism, kernel, image. Let $G = \{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \mathbf{R}, ad \neq 0 \}$, under the operation of matrix multiplication. Let H be the group of nonzero real numbers, under the operation of multiplication [you need not show that these are groups]. Let $\phi : G \to H$ be defined by $$\phi\Big(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}\Big) = ad.$$ Show that ϕ is a homomorphism. Find the kernel and image of ϕ . [9 marks] **3.** Let V be the vector space of polynomials in x of degree at most 2 with coefficients in **R**. Let the linear map $L: V \to V$ be defined by $$L(a + bx + cx^2) = c - bx + ax^2.$$ Find M, the matrix representation of L with respect to the basis $\{1, x, x^2\}$. What are the eigenvalues and eigenvectors of M? [9 marks] - **4.** For any point A and angle α , let $\rho_{A,\alpha}$ denote rotation anticlockwise about A through angle α . For any line ℓ let σ_{ℓ} denote reflection in the line ℓ . - (i) Let ℓ and m be two lines which both pass through point A. Let α be the angle from ℓ to m. Show that $\sigma_m \sigma_\ell = \rho_{A,2\alpha}$. - (ii) Let B and C be two distinct points, let m be the line through B and C, and let β, γ be any two angles, where $\beta \neq -\gamma$. Use part (i) to find a line ℓ through B such that $\sigma_m \sigma_\ell = \rho_{B,\beta}$. Similarly, find a line n through C such that $\sigma_n \sigma_m = \rho_{C,\gamma}$. Hence, or otherwise, show that $\rho_{C,\gamma} \rho_{B,\beta}$ is a rotation. [10 marks] 2MP44 5. Let f be the bilinear form on \mathbb{R}^2 defined by $$f((x_1, x_2), (y_1, y_2)) = x_1 y_1 - x_1 y_2 + x_2 y_2.$$ Let $u_1 = (1,1), u_2 = (0,-1)$. Compute $f(u_1,u_1), f(u_1,u_2), f(u_2,u_1), f(u_2,u_2)$. Find the matrix A of f relative to the basis $\{u_1,u_2\}$. Find the matrix B of f relative to the basis $\{v_1,v_2\}$, where $v_1 = (2,2), v_2 = (0,1)$. Find the change of basis matrix P from $\{u_1, u_2\}$ to $\{v_1, v_2\}$ and show that $B = P^T A P$. [9 marks] **6.** Define what it means for a matrix to be *orthogonal*. Let P, Q be 2×2 matrices with real entries; show that $(PQ)^T = Q^T P^T$. Show that the set of 2×2 orthogonal matrices with real entries is a group under matrix multiplication. [9 marks] ## SECTION B 7. Let V be the vector space of polynomials in x of degree at most 3, with real coefficients. Let $$U = \{a + bx + bx^2 + dx^3 : a, b, d \in \mathbf{R}\}, \quad W = \{a + bx - bx^2 + dx^3 : a, b, d \in \mathbf{R}\}.$$ Show that U and W are subspaces of V. What are the dimensions of each of $U, W, U \cap W$ and U + W? Is it true or false that $V = U \oplus W$? [15 marks] - **8.** (i) Let $f: V \to W$ be a linear map between two vector spaces V and W. Define the rank of f and the nullity of f. State the rank & nullity theorem. - (ii) Let $V = M_2(\mathbf{R})$, the vector space of 2×2 matrices with real entries, and let $M = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$. Let $F: V \to V$ be the linear map defined by F(A) = MA. Find the matrix of F with respect to the basis $\{E_1, E_2, E_3, E_4\}$, where E_1, E_2, E_3, E_4 are $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, respectively. Find a basis for the image of F and a basis for the kernel of F. Find the rank of F and the nullity of F. Verify that the rank & nullity theorem holds in this case. [15 marks] 9. Consider the quadratic form $$q(x, y, z) = x^{2} + 4xy + 5y^{2} - 6xz - 8yz + 8z^{2}.$$ Give the matrix A representing q with respect to the standard basis. Find a diagonal matrix D equivalent to A and the matrix P which describes the change of basis from the standard basis to the basis in which q is diagonal. What are the rank and signature of q? Describe geometrically the surface q(x, y, z) = 25. Draw a sketch of the surface. - **10.**(i) Let G be a group. Show that the identity element e is unique. Show that $\alpha * \beta = e \Rightarrow \beta * \alpha = e$, for any $\alpha, \beta \in G$, - (ii) Show that, for any $\alpha, \beta, \gamma \in G$, $\alpha * \beta = \alpha * \gamma \Rightarrow \beta = \gamma$. Deduce that no element can be repeated in the same row inside a group table. Similarly show that no element can be repeated in the same column. - (iii) The following is a partially completed group table for a group with six elements. Fill in the missing entries. You must justify (entry by entry) why each choice of entry is the only one possible. | * | A | В | С | D | \mathbf{E} | F | |--------------|---|---|---|--------------|--------------|---| | A | F | ? | ? | ? | В | ? | | В | ? | ? | ? | ? | \mathbf{C} | ? | | \mathbf{C} | ? | D | ? | ? | A | ? | | D | ? | ? | ? | \mathbf{E} | ? | ? | | \mathbf{E} | ? | ? | В | ? | ? | ? | | F | ? | В | ? | ? | ? | ? | 4 2MP44 4