Solutions to 1997 May Examination. 2MP44.

SECTION A

1. A group is a set G together with a binary operation * such that: (1) for all g;,92 € G, g1 g2 € G; (2) for
all 91,902,935 € G, g1 * (92 * 93) = (91 * g2) * g3; (3) there exists an element e € G such that, for all g € G,
exg=gxe=g; (4) for every g € G, there exists g~! € G such that gg=! = g7! xg = e (2 marks). If G, H
are groups, then a map ¢ : G — H is a homomorphism if, for all g1,g2 € G, ¢(g1 *1 g2) = ¢(g1) *2 &(g2),
where #; is the group law in G and %, is the group law in H (1 mark). The map ¢ is injective if, for all
91,92 € G, ¢(g1) = ¢(g2) = 91 = g2 (1 mark). The map ¢ is surjective if, for all h € H, there exists
g € G such that ¢(g) = h (1 mark). The given map is indeed homomorphism since, for any 1,22 € Z,
f(z1 4+ 2o) = 271+%2 = 271222 = f(xq) f(z2) (1 mark). The given map is injective since, for any z1,z2 € Z,
if f(z1) = f(x2) then 2°* = 272 and so, taking log base 2 of both sides, 1 = 22 (2 marks). The given map
is not surjective since, for example, 3 ¢ im f — using the fact that f(x) = 2%, z € Z, must be either < 1

(when z < 0) or an integer divisible by 2 (when z > 1) (1 mark). [Total for question 1: 9 marks]

2. A finite set of vectors S = {v1,...v,} is a basis for V if: (1) S spans V — that is, every v € V can be
written as a finite linear combination of members of S; (2) S is linearly independent — that is, whenever
A1v1 + ... Apup, = 0 then Ay = ... = A, = 0 (4 marks). For the given set, if we write the vectors wrt the
standard basis 1,z, 2%, 23, they are: (0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0). Putting these as the rows of
a 4 x 4 matrix, we can use a few elementary row operations to obtain the identity matrix, so that the given

set is a basis (5 marks). [Total for question 2: 9 marks]

3. The map ¢ : V — W is a linear map if, (1) for all v1,vs € V, ¢(v1 + v2) = ¢(v1) + ¢(v2); (2) for all
v eV,A€R, ¢(Av) = Ap(v) (2 marks). The rank of ¢ is the dimension of the image of ¢ (1 mark). The
nullity of ¢ is the dimension of the kernel of ¢ (1 mark).

Applying column operations to the standard matrix for ¢:
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The image of ¢ is the span of the column space, which has basis given by the nonzero columns of the right
hand matrix: {(1,0,1,1),(0,1,1,2)} (1 mark). The rank of ¢ is therefore the number of elements in this
basis, which is 2 (1 mark).

Applying row operations to the standard matrix for ¢:
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So, (z,y,2) € kerpiff Aly | = (0| iff £+ 2 =0,y + 2 = 0, which has general solution: (z,y,z) =
z 0

(—z,—2,2) = z(-=1,-1,1), and so {(—1, —1,1)} gives a basis for ker ¢ (1 mark). The nullity of ¢ is therefore

the number of elements in this basis, which is 1 (1 mark). [Total for question 3: 10 marks]

4. First, we note the following result (from lectures).

Result (*). For any two lines £ and m which both pass through point A, we have 0,,0¢ = pa,20, where 6 is

the angle from £ to m.

Proof (from lectures). First note that oy, 0m,pa,2¢ all leave A unchanged, so that o,00(A4) = A =
pA20(A). Now, let B be any point on ¢ distinct from A and let B’ = 0,,(B). Let the point @ be the
intersection of m and the line BB'. Now, |AQ| = |AQ| and |BQ| = |B'Q| and angle AQB equals angle
AQB' equals 7/2. So, tringle AQB is congruent to AQB’, giving that |AB| = |AB’| and angle QAB’ is the
same as angle BAQ, namely: a. It follows that B’ = p4 24(B). Further, o,(B) = B, since B lies on ¢. So,
we've shown that 0,0¢(B) = B’ = pa2q(B). Similarly, let k be the line through A at angle —a from /,
and let C' be any point on k distinct from A. By a simlar argument to above, 0,,0/(C) = pa,24(C). This
shows that o,,,0¢ and p4 2, agree on the three non-collinear points A, B, C. Since these are isometries, and
since any isometry is determined by its effect on 3 non-collinear points, we conclude that 0,07 = pa 2q, as
required (it helps also to draw a quick diagram of the above). [Since the question did not explicitly ask for
a proof of Result (*), it can be quoted from lectures. It is prudent to include the proof of Result (*) in your
answer, though, since I would give some partial credit for it, even if the rest of your answer made no further
progess].

Now, returning to the given exam question, we first note that, if we let r be the line through A at
angle —a/2 from from n, then by Result (*) we have 0,0, = pa2(a/2 = pPa,o- Similarly, if we let ¢ be
the line through A at angle /2 from from n, then by Result (*) we have 010, = pa2(a/2 = PAa- SO,
PAaTn = OnPaa <= (0104)0n = 0p(0n0r) <= 01(onopn) = (Onon)o, &= o =0, <= t=1
the angle between r and tis 0 or @ <= «/2+ /2 =0 or 7 [since the angle from r to ¢ is the “angle from
r to s plus angle from s to t] <= « = 0 or m, as required. [Note that this is all the same as solution to Ex

Sheet 3, Qn 3, with lines £, m,n there corresponding to r,n,t here]. [Total for question 4: 10 marks]

5. The vectors ui,us,us, expressed in terms of the basis (§2), (35), (30), (09), are given by u; =

(1,-1,-3,0),u2 = (2,—1,-5,0),us = (1,2,0,0). Putting these as rows of a matrix, and using row operations

to reduce to echelon form:

1 -1 -3 0 1 -1 -3 0 1 -1 -3 0 1 0 -2 0
2 -1 =5 0) (0 1 1 0] (0 1 1 0) (01 1 0
1 2 0 0 0 3 3 0 0O 0 0 O 00 0 O

The nonzero rows (1, —1,—3,0), (0,1, 1, 0) of the second-last step above, which correspond to the two matrices

given in the question, are clearly linearly independent and are a basis for U, as required (4 marks).

Representing vy, vz, v3 in the same way, putting them as rows of a matrix, and reducing to echelon form



12 0 O 1 2 0 0 1 2 0 0 1 2 00 1 0 -2 0
23 -10){0 -1 -10)"]0 -1 -1 0)J7(01 10101 1 0
32 -4 0 0 -4 -4 0 0 0 0 O 0000 00 0 O

We can see that (1,0,—2,0), (0,1,1,0) is a basis for V' (4 marks). Since it is also a basis for U we have
that U =V (1 mark). [Total for question 5: 9 marks]

6. A bilinear formisamap f : VxV — R which satisfies: (1) for all uy,uz,v € V, a,b € R, f(au1+bus,v) =
af(u1,v) + bf(ug,v); (2) for all u,v1,v2 € V, a,b € R, f(u,av; + bvz) = af(u,v1) + bf(u,v2) (3 marks).
Such a map is symmetric if, for all u,v € V, f(u,v) = f(v,u) (2 marks). The given map is not a bilinear
form since, for example, taking u; = (1,0),us = (1,0),a = 1,b = 1,v = (0,0), we have ¢(au; + buy,v) =
#((2,0),(0,0)) = 4, whereas af(u1,v) + bf (uz,v) = 1- £((1,0),(0,0)) + 1 £((1,0),(0,0)) =1+ 1 =2, so
that property (1) above is not always satisfied (3 marks). [Total for question 6: 8 marks]

SECTION B

7. We take A, the matrix representing the quadratic form f(z,y, z), form (A|I), and then use row & column
opertations R2 — R2 + Rl & Cz — Cz + Cl followed by: R3 — R3 — (1/2)R2 C3 — 03 — (1/2)02, with only
the column operations being performed on I, as follows:
1 0
10 2
0 0

1 -1 0] 100 1 00 | 1
-1 3 1| 010] 70210
0 1 3| 001 013 |0
1 -1 0 1 00 11 -1
A:(—l 3 1),D:<020),P:(01—§>,Q:P1:<
0 1 3 00 2 00 1

If we now let
then D = PTAP and A = QTDQ (6 marks). Here, A represents the quadratic form wrt z,y,2z and D

represents it wrt new variables r, s,t given by ( 5 —0(?) thatis: r =z—y, s =y+2/2,t =z (3 marks).
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Then, f(z,y,2) = 5 becomes g(r,s,t) = r? + 25> + (5/2)t2 and so the equation for the surface becomes
r? + 252+ (5/2)t> =5 (2 marks). All coefficients are positive, and so this is an ellipsoid. The sketch may
be rough, as long as it looks roughly egg-shaped; there must be some indication of orientation; i.e. that the
principal axes are the r-axis, s-axis and t-axis, if drawn wrt r,s,t, or the z-axis, the line z —y = 2 = 0
and the line z —y = y + 2/2 = 0, if drawn wrt z,y, z coordinates (4 marks). [Total for question 7:
15 marks]

8. The dual space V* is defined to be the set of all linear maps from V to R (1 mark). Given §,¢ € V*,
we can define 6 + ¢ by: (0 + ¢)(z) = 0(z) + ¢(x), for all z € V. Similarly, for A\ € R, define A\ by
(A0)(z) = A(6(z)), for all z € V (2 marks). Given a basis {z1,...,7,} for V, the i-th member of the dual
basis, ¢;, is defined to be the unique linear map from V' to R such that ¢;(z;) = 1 and ¢;(z;) = 0, for all
Jj # 1 (2 marks). Suppose f € V*; define A\; = f(z;) for all j; then (A1 + ... + X)) () = Aj - d5(z;)
[since ¢;(z;) = 0, for all j # i] = A; [since ¢;(x;) = 1]. Hence, f and M1 + ...+ Ap¢p, both take the same



values on each of 1, . .. ,, giving that f = A\1¢1 +. ..+ A, d, [since any linear map is completely determined
by its values on a basis]. Hence, {¢1,...¢,} spans V*. Now suppose that A\j¢1 + ...+ Ap¢, = 0 for some
M, ... Ap. Then, for any j, (M1 + ...+ Anon)(x;) =0, and so A; -1 =0; hence Ay =... = A, =0, and so
@1, .. ¢, are linearly independent. Hence {¢1,...¢,} is a basis for V*. (4 marks).

In the given example, we want ¢ ((z,y)) = az + by € V* to satisfy ¢1(v1) = 1 and ¢, (v2) = 0; that is:
a+b=1and a+ 2b =0, which has solution: a = 2,b = —1, so that ¢, is defined by: ¢, ((z,y)) = 2z —y.
Similarly, we want ¢2((z,y)) = cx + dy € V* to satisfy ¢o(v1) = 0 and ¢a2(v2) = 1; that is: ¢c+d =0
and ¢+ 2d = 1, which has solution: @ = —1,b = 1, so that ¢, is defined by: ¢2((z,y)) = —z +y. Hence,
#1((2,1)) =3 and ¢2((2,1)) = —=1. (6 marks). [Total for question 8: 15 marks]

9. The vector v € V is an eigenvector of f with eigenvalue A € R if v # 0 and f(v) = v (3 marks). First
note that the given map f is just f : (‘i Z) - (Z ‘;) One method is to notice that (} 8) and (8 i), and any
nonzero linear combination of these, are eigenvectors with eigenvalue 1. Similarly, (', () and ( ), and
any nonzero linear combination of these, are eigenvectors with eigenvalue —1. Since we have now found two
eigenspaces each of dimension 2, and since the dimension of the whole vector space in 4, we must have found
them all (12 marks). Alternatively, a more time consuming approach is to compute the 4 x 4 matrix B

representing the map f with respect to the standard basis, and then use det(AI — B), etc.
[Total for question 9: 15 marks]

10. H is a subgroup of G if H is a subset of G, e € H and H forms a group under the same operation
as G [alternatively: H is a subgroup of G if H is a nonempty subset of G satisfying h1h; " € H for every
hi,hy € H] (3 marks). Lagrange’s theorem says that, if G is a finite group, then the order of H divides
the order of G (3 marks). A presentation of the given group G is (o, p|lo? = p" = e,po = op~!). Here, o
is a fixed reflection, and p is a rotation 27 /n (3 marks). The set H is a subgroup, since e is a rotation of
zero degrees, the product of rotations of angles «, 8 is again a rotation (of angle a + ), and the inverse of a
rotation of angle « is again a rotation (of angle —a) (2 marks). The size of H is n and the size of G is 2n;
if there were a K as described, then by Lagrange’s Theorem n would have to divide but not equal order(K),
and order(K) would have to divide but not equal 2n, which is impossible; so no such K exists (4 marks).

[Total for question 10: 15 marks]



