SECTION A

1. Define the terms: group, homomorphism, injective, surjective.

Let G be the group of integers under addition, and let H be the group of nonzero rational numbers under multiplication. Show that the map f, defined by $f(x) = 2^x$, is a homomorphism from G to H. State, giving reasons, whether f is injective. State, giving reasons, whether f is surjective. [9 marks]

- **2.** Define what it means for a finite set of vectors to be a *basis* for a vector space V. Let V be the vector space of polynomials of degree at most 3, with coefficients in \mathbf{R} . Show that the set $\{x+x^2+x^3, 1+x^2+x^3, 1+x+x^3, 1+x+x^2\}$ is a basis for V. [9 marks]
- **3.** Define what it means for $\phi: V \to W$ to be a *linear map* between two vector spaces V and W. Define the rank and nullity of ϕ .

Let $\phi: \mathbf{R}^3 \to \mathbf{R}^4$ be defined by

$$\phi((x, y, z)) = (x + y + 2z, y + z, x + 2y + 3z, x + 3y + 4z).$$

Find a basis for the image of ϕ and a basis for the kernel of ϕ . Find the rank of ϕ . Find the nullity of ϕ . [10 marks]

- **4.** Let A be a point on a line n, let σ_n denote reflection in the line n, and let $\rho_{A,\alpha}$ ($0 \le \alpha < 2\pi$) denote rotation anticlockwise about A through angle α . Show that $\rho_{A,\alpha}\sigma_n = \sigma_n\rho_{A,\alpha}$ if and only if $\alpha = 0, \pi$. [10 marks]
- **5.** Let W be the vector space of 2×2 matrices with entries in **R**. Let U be the subspace of W spanned by

$$u_1 = \begin{pmatrix} 1 & -1 \\ -3 & 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 2 & -1 \\ -5 & 0 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}.$$

Show that $\left\{ \begin{pmatrix} 1 & -1 \\ -3 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$ is a basis for U.

Let V be the subspace of W spanned by

$$v_1 = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 & 3 \\ -1 & 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 3 & 2 \\ -4 & 0 \end{pmatrix}.$$

Show that U = V.

[9 marks]

6. Define a bilinear form. Say what it means for a bilinear form to be symmetric. Let $\phi: V \times V \to \mathbf{R}$ be defined by

$$\phi((x_1, y_1), (x_2, y_2)) = x_1^2 + x_2^2 + y_1^2 + y_2^2.$$

Show that ϕ is not a bilinear form.

[8 marks]

SECTION B

- 7. Consider the surface $f(x, y, z) = x^2 + 3y^2 + 3z^2 2xy + 2yz = 5$. Find a linear change of coordinates which diagonalises the quadratic form f(x, y, z). Describe the surface as one of the following: Ellipsoid, Hyperboloid of one sheet, Hyperboloid of two sheets, Elliptic Cone. Draw a sketch of the surface. [15 marks]
- **8.** Suppose $\{x_1, \ldots, x_n\}$ is a basis for a vector space V. Describe the dual space V^* to V and describe how to define addition and scalar multiplication on V^* [you need not prove that V^* is a vector space]. Define the dual basis $\{\phi_1, \ldots, \phi_n\}$ to $\{x_1, \ldots, x_n\}$ and prove that it is a basis for V^* .

Consider the basis $\{v_1, v_2\}$ of \mathbf{R}^2 , where $v_1 = (1, 1)$ and $v_2 = (1, 2)$. Find the dual basis $\{\phi_1, \phi_2\}$ to $\{v_1, v_2\}$. Compute $\phi_1((2, 1))$ and $\phi_2((2, 1))$. [15 marks]

9. Let V be a vector space, and let $f:V\to V$ be a linear map. Define what it means for a $v\in V$ to be an eigenvector of f with eigenvalue λ .

Let V be the vector space of 2×2 matrices with entries in **R**. Define the map $f: V \to V$ by

$$f(A) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} A.$$

Describe the eigenvectors and eigenvalues of f.

[15 marks]

10. Define what it means for H to be a subgroup of a group G. State Lagrange's Theorem.

Let G be the dihedral group D_{2n} [the group of symmetries of a regular polygon of n sides]. Write down a presentation of G [you need not prove that it is a presentation]. Let H be the set of rotational symmetries of a regular polygon of n sides. Show that H is a subgroup of G. Decide whether there exists a group K, distinct from both H and G, such that both H is a subgroup of G. [15 marks]

2MP44 3 3