SECTION A

1. A finite set of vectors S = {vy,...v,} is a basis for V if: (1) S spans V

— that is, every v € V can be written as a finite linear combination of members

of S; (2) S is linearly independent — that is, whenever Ajv; + ... \,v, = 0 then
AM=...= )\, =

[2 marks]. Definition from lectures.

For the set {({}), (] 0) (51)> (1 0)}, if we write the vectors wrt the standard

basis {(0)s (50)s (°°) (59} they are: (0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0).
Putting these as the rows of a 4 x 4 matrix, we can use a few elementary row
operations (namely: T1 <> T9, T3 —>T3—T1,T4a —>T4—T1,T3 —>T3—T2, T4 —> T4—T2,
rs = (=1/2)rs, 11 — 11 — 13, T9 — T9 — T3, T4 — T4+ T3, T4 = (—2/3)74,
r1 =11 — (1/2)rg, 1o = 19 — (1/2)14, r3 = 73 — (1/2)14) to obtain the identity
matrix, so that the given set is a basis [or, show directly from definitions that
the set spans V' and is linearly independent].

[4 marks]. Seen similar in lectures.

The set {(;), (1q), (00) (1 %), } is not linearly independent, since:

10 11 0

L-(g0)+ (=) -C)+1-(IND 4+ (=1)(;3) = (g9), and so the set is not a basis.
[2 marks|. Seen similar in exercises.

8 marks in total for Question 1

MATH244 2 11



2. A group is a set G together with a binary operation * such that: (1) for
all g1, 92 € G, g1 * g2 € G; (2) for all g1, 90,95 € G, g1 * (92 * g3) = (91 * g2) * g3;
(3) there exists an element e € G such that, for all g € G, ex g = g*xe = g;
(4) for every g € G, there exists g7' € G such that gx g ! = g lxg=e. If
G, H are groups, then a map ¢ : G — H is a homomorphism if, for all g, go € G,
(g1 *1 g2) = ¢(g1) *2 ¢(g2), where *; is the group law in G and *, is the group
law in H. The map ¢ is injective if, for all g1, 92 € G, ¢(g1) = d(g92) = g1 = go-
The map ¢ is surjective if, for all h € H, there exists g € G such that ¢(g) = h.

[5 marks|. Standard definitions from lectures.
a1 by

For any g1 = (¢ ), 92 = (} Zz) € G we have

¢(g192) = o((; Zi)(“& Sz)) =o((“y” “lbjfdzld?) = (aga2)* = aja3 = $(91)¢(g2)-
Hence ¢ is a homomorphism.

qﬁ(((l) ) =1= qﬁ(((l)f)), for example, so that ¢ is not injective.

For any h € H, we have that h is a positive real number, and so:
#((V%)) = (Vh)? = h. Hence ¢ is surjective.

01
[4 marks]. Seen somewhat similar in exercises.

9 marks in total for Question 2
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3. The rank of F is the dimension of im F' (where im F' = the image of F' =
{F(v) : v € V'}). The kernel of F is the dimension of ker F' (where ker ' = the
kernel of F = {v € V : F(v) = 0}). The rank & nullity theorem states that the
rank of F' plus the nullity of F' is dim(V).

[2 marks]
Applying column operations to the matrix for F' gives:

1 3 0 2 1 0 0 O 1 0 0 O
-1 -21 0of(~|-1 1 1 2 |~(-1 1 0 0].
2 3 0 =2 2 -3 0 -6 2 -3 30

A basis for the image of F' is given by the linearly independent columns, namely:
{(1,-1,2),(0,1,-3),(0,0,3)}. The image of F therefore has dimension 3 and so
the rank is 3.

[3 marks]
Applying row operations to the matrix for F' gives:

1 3 0 2 1 3 0 2 1 0 -3 —4
-1 -21 O0f(—]J]0 1 1 2 |—|]0 1 1 2
2 3 0 =2 0 -3 0 -6 0o 0 3 0

1 0 -3 —4 1 0 0 —4
—10 1 1 2 |70 1 0 2
0 0 1 0 0 01 0

So, (z,y,s,t) is in the kernel of F' iff it satisfies F((x,y,s,t)) = (0,0,0); that is
to say:
1 0 0 -4
01 0 2
0 0 1 O

SV RN ]

0
=10
0

The general solution is: (z,y,s,t) = (4t,—2t,0,t) = t(4,—2,0,1). A basis is
therefore {(4,—2,0,1)} [which contains a single nonzero vector and so is clearly
linearly independent|, and so the dimension of the kernel is 1, giving that the
nullity is 1.

[4 marks]
We now observe that rank + nullity = 4, which is indeed the dimension of V.
[1 mark]| Whole question: seen similar in exercises.

10 marks in total for Question 3
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4. (i) First note that oy, oy, pa2q all leave A unchanged, so that o,,,0,(A4) =
A = pa2a(A). Now, let B be any point on ¢ distinct from A, let B’ = 0,,(B)
and let n be the line through A and B’. Let the point @) be the intersection of m
and the line BB'. Now, |AQ| = |AQ)| and |BQ| = |B'Q| and angle AQB equals
angle AQB' equals 7/2. So, triangle AQB is congruent to AQB’, giving that
|AB| = |AB'| and angle QAB' is the same as angle BAQ, namely: «. It follows
that B' = p42q4(B). Further, 0y(B) = B, since B lies on £. So, we’ve shown that
0m0e(B) = B' = pasa(B). Similarly, let k& be the line through A at angle —«
from ¢, and let C' be any point on £ distinct from A. By a simlar argument to
above, 0,0¢(C) = p424(C). This shows that 0,00 and pa o, agree on the three
non-collinear points A, B, C'. Since these are isometries, and since any isometry is
determined by its effect on 3 non-collinear points, we conclude that 0,0, = pa 2a,
as required [it helps also to draw a quick diagram of the above].

[5 marks]. Bookwork from lectures.
(ii) Let r be the line through B at angle —3/2 from s. By part (i), we
have: 0,0, = pp2(s/2) = pB,s. Similarly, let ¢ be the line through B at angle B/2
from s. By part (i), we have: o0, = ppos/2) = pPB,s- SO, PBETs = Osppps
(0105)0s = 05(050,) <= 04(0505) = (0505)0, < oy =0, < t=r
the angle between r and ¢ is 0 or 7 <= (/24 /2 = 0 or 7 [since the angle
from r to t is the “angle from 7 to s plus angle from s to t| <= [ =0 or 7, as
required.

[5 marks]. Seen similar in exercises.

10 marks in total for Question 4
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5. We compute: f(uj,uy) =1-1-2-1-24+2-2 =1, f(u,ug) = 1-
(=2)—2-1-34+2-3=-2, f(ug,uy) = (-2)-1-2-(-2)-243-2 = 12,
flug,ug) = (=2) - (—=2) —2-(—2) -3+ 3-3 =25. So, the matrix of f wrt u, us
is A= (112 g;)

[3 marks]

Similarly, f(vi,v1) = (=1) - (1) =2-(=1) -5+ 5-5 = 36, f(v1,02) =
(-1)-4—-2-(-1)-145-1=3, f(vo,v1) =4-(-1)—2-4-5+1-5= -39,
flvg,v) =4-4—2-4-14+1-1=09. So, the matrix of f wrt uj,uy is B = (f’ggg).
[3 marks]

Now, note that v1 = 1-u; + 1 - us, so that “1” and “1” are the entries of
the first column of the change-of-basis matrix. Similarly, vo = 2 - u; + (—1) - us,
so that “2” and “-1” are the entries of the second column of the change-of-basis
matrix. This gives P = (i 31) as the required change-of-basis matrix. Finally,

check that: PTAP = (1 ) (L)) =G DG 2)0 ) =0 )G 2 =

12 25 /\1 —1 2-1/V12 25731 —-1 2-1/\37 -1
( 36 3

40 9) = B, as required.

[3 marks|. Whole question: seen similar (once) in ezercises.

9 marks in total for Question 5
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6. Lete =1,ep=mx,e3=1%e4 =21 Then L(e;)=L(1)=2>=0-¢, +0-
es+0-e3+1-e4, so that the first column of the matrix should have entries 0, 0, 0, 1.
Similarly, L(ey) = 0-e14+(—1)-e2+0-e3+0-e4, L(ez) = 0-e1+0-ea4(—1)-e3+0-¢4,

0 0 0 1
. 0 -1 0 0
and L(es) = 1-e;4+0-e3+0-e340-e4, so that the matrixis: A = 0 0 —1 0
1 0 0 O
[3 marks].

We now compute det(A — A), using first 71 <> 74 (which negates the deter-
minant) and then ry — 74 + Ay (which leave the determinant unchanged), as
follows:

A0 0 —1 1 0 0 A
0 A+1 0 0 |_ 0 A+1 0 0
detl o "o ax1 o T g o ax1 0
~1 0 0 A A0 0 -1
10 0 A
o 0 A+1 0 o |_ -
=—det| o "0 yuq o | =-CDAFDA+HE -1,
0 0 0 A2—1

which is (A — 1)(X + 1)3. We therefore see that the possible eigenvalues are
A=1,-1. When A = 1, a vector v = a + bx + cx? + dx® is an eigenvector
with eigenvalue 1 iff L(v) = \v iff d — bz — c2? + ax® = a + bx + cx? + dz® iff
d=a,-b=b—-c=c,a=diffa =d and b = ¢ = 0 iff v is of the form a + az?®
(a #0). When A = —1, a vector v = a + br + cz® + dz® is an eigenvector with
eigenvalue —1 iff L(v) = M iff d — bz —cz® +ax® = —a—br—cz®* —dz® iff d = —a
iff v is of the form a + bz + cz? — az® (a, b, ¢ not all 0).

[6 marks]. Whole question: seen similar (once) in exercises.

9 marks in total for Question 6
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SECTION B

7. A typical member of U is (‘; ). Then (79) € U by takinga =b=d = 0.

If (37) € U and A € R then A(; ) = (33 3,) € U. Finally, if (3'3}), (2 2) € U

a1 by a2 b2y _ (ai+az bi+b2
then (3 1)+ (32 2) = (4l 41a) € U. Hence, U is a subspace.

A typical member of W is (_Obg). Then (Jg) € W by taking b = 0. If

(54) € Wand A € R then A% 0) = (2 %) = (%) € W. Finally, if

. b b b by+b
_(;;1 ol)a( 0 5) € W then (_%1 0) + (_%2 2) = (_blo_b2 h(; 2)
W. Hence W is a subspace.

0 b1+b
(—(b1—|—b2) 10 2) €

[4 marks].

Consider M; = (39), M2 = (2;), M3 = ({?). Then any member of U, (4°),

can be written as a linear combination: aM; + bMs + dM;, and so M, My, M3

span U. Also, if Ay My + AoMy + A3Ms = 0, then (3! 3®) = (5g), and so A =

Ay = A3 = 0, giving that M, Ms, Mj are linearly independent. We conclude that
{Mi, My, M3} is a basis for U and so U has dimension 3.

[Merely stating without justification that dim(U) = 3 gets 1 mark; similarly for
each of dim(W), dim(U N W), dim(U + W), below|
[3 marks].

A typical member of W looks like: (%, 2). Clearly, (° ;) is a basis and so W
has dimension 1.

[2 marks].
A matrix A is in UNW if A is of the form (} d) and (° b O) simultaneously, so

that a =d =0 and b = —b, givinga = b = d = 0, which is only possible when
A= (Q7); that is, U N'W consists only of (Jg), and so has dimension 0.

[2 marks].
Any matrix (*) in M, (R) can be written as: (b1e)/2 b+c)/2)+( (e (,)))/2 (b-a/zy,
where the first addend is in U and the second 1n Therefore, anything in

M,(R) can be written as an element of U plus an element of W, and so: U +
W = M,(R), which has dimension 4 [since, for example, the standard basis:
(o0, (20), (O0), (37) has size 4]. [It is also acceptible to state and apply:
dim(U + W) = dim(U) + dim(W) — dim(U N W)]
[3 marks].
Finally, it is true that V = U & W, since we have both V. = U + W and
UNnWw ={0}.
[1 mark].
15 marks in total for Question 7. Unseen.
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8. The dual space V* is defined to be the set of all linear maps from V
to R. Given 0,¢ € V* we can define 0 + ¢ by: (6 + ¢)(z) = 0(x) + ¢(x),
for all x € V. Similarly, for A € R, define A0 by (A\0)(z) = A(f(z)), for all
z € V. Given a basis {zi,...,z,} for V, the i-th member of the dual basis,
¢;, is defined to be the unique linear map from V' to R such that ¢;(z;) = 1
and ¢;(xz;) = 0, for all j # 4. Suppose f € V*; define \; = f(z;) for all j;
then ()\1¢1 +...+ )\n¢n)($]) = )\j : ¢j(l‘j) [SiIlCG qbz(:c]) = 0, for allj 7& Z] = )\j
[since ¢;(z;) = 1]. Hence, f and Aj¢1 + ... + A\,¢, both take the same values
on each of xy,...z,, giving that f = A\j¢; + ... + A\, ¢, [since any linear map is
completely determined by its values on a basis]. Hence, {¢1,...¢,} spans V*.
Now suppose that A\ + ...+ A\, = 0 for some Ay,...,\,. Then, for any 7,
(M1 + ...+ ) (z;) =0, and so Aj - 1 = 0; hence Ay = ... =\, =0, and so
¢1, - - - ¢ are linearly independent. Hence {¢1,...d,} is a basis for V*.

[9 marks| Bookwork

In the given example, ¢ ((z,y)) = ax+by € V* is defined to satisfy ¢ (vi) =1
and ¢ (v2) = 0; similarly, ¢o((z,y)) = cx+dy € V* is defined to satisfy ¢o(v1) =0
and ¢o(vg) = 1.

[2 marks]

That is: 2a — 5b =1 and a — b = 0, which has solution: ¢ = —1/3,b = —1/3,
so that ¢; is defined by: ¢1((z,y)) = —(1/3)x — (1/3)y. Similarly, 2¢ — 5d = 0
and ¢ — d = 1, which has solution: ¢ = 5/3,d = 2/3, so that ¢, is defined by:
¢2((z,y)) = (5/3)x + (2/3)y. Hence, $:1((2,3)) = —5/3 and ¢1((2,3)) = 16/3.

[4 marks] Seen similar in exercises

15 marks in total for Question 8
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9. The law of inertia says that, if A is any real symmetric matrix, then there
is an invertible matrix P such that PT AP is diagonal; further, all such diagonal
representations of A have the same number p of positive entries, and n of negative
entries. The signature is then p — n.

[4 marks]

For the given matrix A, we first construct (A|I), and then diagonalise A by
applying: step 1, Ry — Ry — Ry and Cy — Cy — C; step 2, R3 — R3 — 3R, and
C3 — C3 — 3C5; only the column operation is applied to I:

1 1 0 | 1 00 1 0 0 | 1 —-10
1 0 -3/ 0100 -1 =3 ] 0 1 0
0 -3 =5 | 0 01 0 -3 -5 | 0 0 1
1 0 0| 1 -1 3
- -1 0 | 1 -3
0o 0 4 ] 0 0 1
Taking
1 0 0 1 -1 3
D=0 -1 0|, P=|0 1 =3/,
0 0 4 0 0 1
we then have: D = PTAP, and so D is a diagonal form for A.
[8 marks].

The signature is 2 — 1 = 1. A is not positive definite, since not all entries in
the leading diagonal of D are positive.

[3 marks| Seen similar in exercises.

15 marks in total for Question 9
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10.(i) The order k is the smallest integer > 1 such that g¥ = e. Two groups
G and H are isomorphic if there is a map 6 : G — H which is bijective (1-1
and onto) and a homomorphism (6(g; *1 g2) = 0(g1) *2 0(g2) for all g1, g0 € G).
Suppose there is a g € G of order k. Then k satisfies ¢g* = e and is the smallest
such. Then 0(g*) = 0(e¢) = en, giving: 0(g)*¥ = ey, since 0 is a homomorphism.
So, h* = ey, where h = 0(g). Imagine that h™ = ey for some 1 < r < k. Then
6-1(h") = 0 '(eny) = eq; that is: ¢" = g, contradicting the assumption that k
is the smallest integer > 1 such that ¢* = eg. Hence order(h) = k, as required.

[7 marks| Bookwork
(i) A presentation of the given group G is (o, plo® = p" = e, po = op™!).
Here, o is a fixed reflection, and p is a rotation 27/n. A presentation of H is
(plp"™ =e).
[5 marks] From lectures
Finally, R¢ contains an element (namely p) of order 6, whereas the orders of
the elements in Dg are: 1,2,2,2,3,3. So Dg and Rg are not isomorphic.

[3 marks] Unseen

15 marks in total for Question 10
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