SECTION A

1. A finite set of vectors $S = \{v_1, \dots v_n\}$ is a *basis* for V if: (1) S spans V – that is, every $v \in V$ can be written as a finite linear combination of members of S; (2) S is linearly independent – that is, whenever $\lambda_1 v_1 + \dots \lambda_n v_n = 0$ then $\lambda_1 = \dots = \lambda_n = 0$

[2 marks]. Definition from lectures.

For the set $\{\binom{0\ 1}{1\ 1},\binom{1\ 0}{1\ 1},\binom{1\ 1}{0\ 1},\binom{1\ 1}{1\ 0}\}$, if we write the vectors wrt the standard basis $\{\binom{0\ 0}{0\ 0},\binom{0\ 1}{0\ 0},\binom{0\ 0}{1\ 0},\binom{0\ 0}{0\ 1}\}$ they are: (0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0). Putting these as the rows of a 4×4 matrix, we can use a few elementary row operations (namely: $r_1\leftrightarrow r_2,\,r_3\to r_3-r_1,\,r_4\to r_4-r_1,\,r_3\to r_3-r_2,\,r_4\to r_4-r_2,\,r_3\to (-1/2)r_3,\,r_1\to r_1-r_3,\,r_2\to r_2-r_3,\,r_4\to r_4+r_3,\,r_4\to (-2/3)r_4,\,r_1\to r_1-(1/2)r_4,\,r_2\to r_2-(1/2)r_4,\,r_3\to r_3-(1/2)r_4)$ to obtain the identity matrix, so that the given set is a basis [or, show directly from definitions that the set spans V and is linearly independent].

[4 marks]. Seen similar in lectures.

The set $\{\binom{1}{0}, \binom{0}{1}, \binom{0}{1}, \binom{0}{1}, \binom{0}{1}, \binom{1}{0}, \binom{1}{0}, \frac{1}{0}\}$ is not linearly independent, since: $1 \cdot \binom{1}{0} + (-1) \cdot \binom{0}{1} + 1 \cdot \binom{0}{0} + (-1) \cdot \binom{0}{0} + (-1) \cdot \binom{0}{0} + (-1) \cdot \binom{0}{0} = \binom{0}{0}$, and so the set is not a basis.

[2 marks]. Seen similar in exercises.

2. A group is a set G together with a binary operation * such that: (1) for all $g_1, g_2 \in G$, $g_1 * g_2 \in G$; (2) for all $g_1, g_2, g_3 \in G$, $g_1 * (g_2 * g_3) = (g_1 * g_2) * g_3$; (3) there exists an element $e \in G$ such that, for all $g \in G$, e * g = g * e = g; (4) for every $g \in G$, there exists $g^{-1} \in G$ such that $g * g^{-1} = g^{-1} * g = e$. If G, H are groups, then a map $\phi: G \to H$ is a homomorphism if, for all $g_1, g_2 \in G$, $\phi(g_1 *_1 g_2) = \phi(g_1) *_2 \phi(g_2)$, where $*_1$ is the group law in G and $*_2$ is the group law in G. The map G is injective if, for all G0, G1, G2, G3, G3, G4, G5, G5, G5, G5, G6, G6, G7, G8, G9, G9,

[5 marks]. Standard definitions from lectures.

For any $g_1 = \begin{pmatrix} a_1 & b_1 \\ 0 & d_1 \end{pmatrix}$, $g_2 = \begin{pmatrix} a_2 & b_2 \\ 0 & d_2 \end{pmatrix} \in G$ we have

 $\phi(g_1g_2) = \phi(\begin{pmatrix} a_1 & b_1 \\ 0 & d_1 \end{pmatrix}\begin{pmatrix} a_2 & b_2 \\ 0 & d_2 \end{pmatrix}) = \phi(\begin{pmatrix} a_1a_2 & a_1b_2 + b_1d_2 \\ 0 & d_1d_2 \end{pmatrix}) = (a_2a_2)^2 = a_1^2a_2^2 = \phi(g_1)\phi(g_2).$ Hence ϕ is a homomorphism.

 $\phi((\begin{smallmatrix}1&1\\0&1\end{smallmatrix}))=1=\phi((\begin{smallmatrix}1&2\\0&1\end{smallmatrix})),$ for example, so that ϕ is not injective.

For any $h \in H$, we have that h is a positive real number, and so: $\phi((\sqrt[N]{h},0)) = (\sqrt[N]{h})^2 = h$. Hence ϕ is surjective.

[4 marks]. Seen somewhat similar in exercises.

9 marks in total for Question 2

3. The rank of F is the dimension of im F (where im F = the image of F = $\{F(v): v \in V\}$). The kernel of F is the dimension of ker F (where ker F = the kernel of F = $\{v \in V: F(v) = 0\}$). The rank & nullity theorem states that the rank of F plus the nullity of F is $\dim(V)$.

[2 marks]

Applying column operations to the matrix for F gives:

$$\begin{pmatrix} 1 & 3 & 0 & 2 \\ -1 & -2 & 1 & 0 \\ 2 & 3 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 1 & 2 \\ 2 & -3 & 0 & -6 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & -3 & 3 & 0 \end{pmatrix}.$$

A basis for the image of F is given by the linearly independent columns, namely: $\{(1, -1, 2), (0, 1, -3), (0, 0, 3)\}$. The image of F therefore has dimension 3 and so the rank is 3.

[3 marks]

Applying row operations to the matrix for F gives:

$$\begin{pmatrix} 1 & 3 & 0 & 2 \\ -1 & -2 & 1 & 0 \\ 2 & 3 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 0 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & -3 & 0 & -6 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 3 & 0 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

So, (x, y, s, t) is in the kernel of F iff it satisfies F((x, y, s, t)) = (0, 0, 0); that is to say:

$$\begin{pmatrix} 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ s \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

The general solution is: (x, y, s, t) = (4t, -2t, 0, t) = t(4, -2, 0, 1). A basis is therefore $\{(4, -2, 0, 1)\}$ [which contains a single nonzero vector and so is clearly linearly independent], and so the dimension of the kernel is 1, giving that the nullity is 1.

[4 marks]

We now observe that rank + nullity = 4, which is indeed the dimension of V.

[1 mark] Whole question: seen similar in exercises.

4. (i) First note that $\sigma_{\ell}, \sigma_m, \rho_{A,2\alpha}$ all leave A unchanged, so that $\sigma_m \sigma_{\ell}(A) = A = \rho_{A,2\alpha}(A)$. Now, let B be any point on ℓ distinct from A, let $B' = \sigma_m(B)$ and let n be the line through A and B'. Let the point Q be the intersection of m and the line BB'. Now, |AQ| = |AQ| and |BQ| = |B'Q| and angle AQB equals angle AQB' equals $\pi/2$. So, triangle AQB is congruent to AQB', giving that |AB| = |AB'| and angle QAB' is the same as angle BAQ, namely: α . It follows that $B' = \rho_{A,2\alpha}(B)$. Further, $\sigma_{\ell}(B) = B$, since B lies on ℓ . So, we've shown that $\sigma_m \sigma_{\ell}(B) = B' = \rho_{A,2\alpha}(B)$. Similarly, let k be the line through A at angle $-\alpha$ from ℓ , and let C be any point on k distinct from A. By a similar argument to above, $\sigma_m \sigma_{\ell}(C) = \rho_{A,2\alpha}(C)$. This shows that $\sigma_m \sigma_{\ell}$ and $\rho_{A,2\alpha}$ agree on the three non-collinear points A, B, C. Since these are isometries, and since any isometry is determined by its effect on 3 non-collinear points, we conclude that $\sigma_m \sigma_{\ell} = \rho_{A,2\alpha}$, as required [it helps also to draw a quick diagram of the above].

[5 marks]. Bookwork from lectures.

(ii) Let r be the line through B at angle $-\beta/2$ from s. By part (i), we have: $\sigma_s\sigma_r=\rho_{B,2(\beta/2)}=\rho_{B,\beta}$. Similarly, let t be the line through B at angle $\beta/2$ from s. By part (i), we have: $\sigma_t\sigma_s=\rho_{B,2(\beta/2)}=\rho_{B,\beta}$. So, $\rho_{B,\beta}\sigma_s=\sigma_s\rho_{B,\beta}\iff (\sigma_t\sigma_s)\sigma_s=\sigma_s(\sigma_s\sigma_r)\iff \sigma_t(\sigma_s\sigma_s)=(\sigma_s\sigma_s)\sigma_r\iff \sigma_t=\sigma_r\iff t=r\iff the$ angle between r and t is 0 or $\pi\iff \beta/2+\beta/2=0$ or π [since the angle from r to t is the "angle from r to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t plus angle from

[5 marks]. Seen similar in exercises.10 marks in total for Question 4

5. We compute: $f(u_1, u_1) = 1 \cdot 1 - 2 \cdot 1 \cdot 2 + 2 \cdot 2 = 1$, $f(u_1, u_2) = 1 \cdot (-2) - 2 \cdot 1 \cdot 3 + 2 \cdot 3 = -2$, $f(u_2, u_1) = (-2) \cdot 1 - 2 \cdot (-2) \cdot 2 + 3 \cdot 2 = 12$, $f(u_2, u_2) = (-2) \cdot (-2) - 2 \cdot (-2) \cdot 3 + 3 \cdot 3 = 25$. So, the matrix of f wrt u_1, u_2 is $A = \begin{pmatrix} 1 & -2 \\ 12 & 25 \end{pmatrix}$.

[3 marks]

Similarly, $f(v_1, v_1) = (-1) \cdot (-1) - 2 \cdot (-1) \cdot 5 + 5 \cdot 5 = 36$, $f(v_1, v_2) = (-1) \cdot 4 - 2 \cdot (-1) \cdot 1 + 5 \cdot 1 = 3$, $f(v_2, v_1) = 4 \cdot (-1) - 2 \cdot 4 \cdot 5 + 1 \cdot 5 = -39$, $f(v_2, v_2) = 4 \cdot 4 - 2 \cdot 4 \cdot 1 + 1 \cdot 1 = 9$. So, the matrix of f wrt u_1, u_2 is $B = \begin{pmatrix} 36 & 3 \\ -39 & 9 \end{pmatrix}$.

Now, note that $v_1=1\cdot u_1+1\cdot u_2$, so that "1" and "1" are the entries of the first column of the change-of-basis matrix. Similarly, $v_2=2\cdot u_1+(-1)\cdot u_2$, so that "2" and "-1" are the entries of the second column of the change-of-basis matrix. This gives $P=\binom{1\ 2}{1\ -1}$ as the required change-of-basis matrix. Finally, check that: $P^TAP=\binom{1\ 2}{1\ -1}^T\binom{1\ -2}{12\ 25}\binom{1\ 2}{1\ -1}=\binom{1\ 1}{2\ -1}\binom{1\ 2}{12\ 25}\binom{1\ 2}{1\ -1}=\binom{1\ 1}{2\ -1}\binom{-1\ 4}{37\ -1}=\binom{36\ 3}{-39\ 9}=B$, as required.

[3 marks]. Whole question: seen similar (once) in exercises.

6. Let $e_1 = 1$, $e_2 = x$, $e_3 = x^2$, $e_4 = x^3$. Then $L(e_1) = L(1) = x^3 = 0 \cdot e_1 + 0 \cdot e_2 + 0 \cdot e_3 + 1 \cdot e_4$, so that the first column of the matrix should have entries 0, 0, 0, 1. Similarly, $L(e_2) = 0 \cdot e_1 + (-1) \cdot e_2 + 0 \cdot e_3 + 0 \cdot e_4$, $L(e_3) = 0 \cdot e_1 + 0 \cdot e_2 + (-1) \cdot e_3 + 0 \cdot e_4$,

and
$$L(e_4) = 1 \cdot e_1 + 0 \cdot e_2 + 0 \cdot e_3 + 0 \cdot e_4$$
, so that the matrix is: $A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$.

[3 marks].

We now compute $\det(\lambda I - A)$, using first $r_1 \leftrightarrow r_4$ (which negates the determinant) and then $r_4 \to r_4 + \lambda r_1$ (which leave the determinant unchanged), as follows:

$$\det \begin{pmatrix} \lambda & 0 & 0 & -1 \\ 0 & \lambda + 1 & 0 & 0 \\ 0 & 0 & \lambda + 1 & 0 \\ -1 & 0 & 0 & \lambda \end{pmatrix} = -\det \begin{pmatrix} -1 & 0 & 0 & \lambda \\ 0 & \lambda + 1 & 0 & 0 \\ 0 & 0 & \lambda + 1 & 0 \\ \lambda & 0 & 0 & -1 \end{pmatrix}$$

$$= -\det \begin{pmatrix} -1 & 0 & 0 & \lambda \\ 0 & \lambda + 1 & 0 & 0 \\ 0 & 0 & \lambda + 1 & 0 \\ 0 & 0 & 0 & \lambda^2 - 1 \end{pmatrix} = -(-1)(\lambda + 1)(\lambda + 1)(\lambda^2 - 1),$$

which is $(\lambda - 1)(\lambda + 1)^3$. We therefore see that the possible eigenvalues are $\lambda = 1, -1$. When $\lambda = 1$, a vector $v = a + bx + cx^2 + dx^3$ is an eigenvector with eigenvalue 1 iff $L(v) = \lambda v$ iff $d - bx - cx^2 + ax^3 = a + bx + cx^2 + dx^3$ iff d = a, -b = b, -c = c, a = d iff a = d and b = c = 0 iff v is of the form $a + ax^3$ ($a \neq 0$). When $\lambda = -1$, a vector $v = a + bx + cx^2 + dx^3$ is an eigenvector with eigenvalue -1 iff $L(v) = \lambda v$ iff $d - bx - cx^2 + ax^3 = -a - bx - cx^2 - dx^3$ iff d = -a iff v is of the form $a + bx + cx^2 - ax^3$ (a, b, c not all 0).

[6 marks]. Whole question: seen similar (once) in exercises.

SECTION B

7. A typical member of U is $\binom{a\ b}{b\ d}$. Then $\binom{0\ 0}{0\ 0} \in U$ by taking a=b=d=0. If $\binom{a\ b}{b\ d} \in U$ and $\lambda \in \mathbf{R}$ then $\lambda \binom{a\ b}{b\ d} = \binom{\lambda a\ \lambda b}{\lambda b\ \lambda d} \in U$. Finally, if $\binom{a_1\ b_1}{b_1\ d_1}, \binom{a_2\ b_2}{b_2\ d_2} \in U$ then $\binom{a_1\ b_1}{b_1\ d_1} + \binom{a_2\ b_2}{b_2\ d_2} = \binom{a_1+a_2\ b_1+b_2}{b_1+b_2\ d_1+d_2} \in U$. Hence, U is a subspace.

A typical member of W is $\begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}$. Then $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in W$ by taking b = 0. If $\begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} \in W$ and $\lambda \in \mathbf{R}$ then $\lambda \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} = \begin{pmatrix} 0 & \lambda b \\ \lambda(-b) & 0 \end{pmatrix} = \begin{pmatrix} 0 & \lambda b \\ -\lambda b & 0 \end{pmatrix} \in W$. Finally, if $\begin{pmatrix} 0 & b_1 \\ -b_1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & b_2 \\ -b_2 & 0 \end{pmatrix} \in W$ then $\begin{pmatrix} 0 & b_1 \\ -b_1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & b_2 \\ -b_2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & b_1 + b_2 \\ -b_1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & b_1 + b_2 \\ -(b_1 + b_2) & 0 \end{pmatrix} \in W$. Hence W is a subspace.

[4 marks].

Consider $M_1=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $M_2=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $M_3=\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Then any member of U, $\begin{pmatrix} a & b \\ b & d \end{pmatrix}$, can be written as a linear combination: $aM_1+bM_2+dM_3$, and so M_1,M_2,M_3 span U. Also, if $\lambda_1M_1+\lambda_2M_2+\lambda_3M_3=0$, then $\begin{pmatrix} \lambda_1&\lambda_2\\ \lambda_2&\lambda_3 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, and so $\lambda_1=\lambda_2=\lambda_3=0$, giving that M_1,M_2,M_3 are linearly independent. We conclude that $\{M_1,M_2,M_3\}$ is a basis for U and so U has dimension 3.

[Merely stating without justification that $\dim(U) = 3$ gets 1 mark; similarly for each of $\dim(W)$, $\dim(U \cap W)$, $\dim(U + W)$, below]

[3 marks].

A typical member of W looks like: $\begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}$. Clearly, $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ is a basis and so W has dimension 1.

[2 marks].

A matrix A is in $U \cap W$ if A is of the form $\begin{pmatrix} a & b \\ b & d \end{pmatrix}$ and $\begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}$ simultaneously, so that a = d = 0 and b = -b, giving a = b = d = 0, which is only possible when $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$; that is, $U \cap W$ consists only of $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, and so has dimension 0.

[2 marks].

Any matrix $\binom{a\ b}{c\ d}$ in $M_2(\mathbf{R})$ can be written as: $\binom{a\ (b+c)/2}{(b+c)/2} + \binom{0\ (b-c)/2}{d}$, where the first addend is in U and the second in W. Therefore, anything in $M_2(\mathbf{R})$ can be written as an element of U plus an element of W, and so: $U+W=M_2(\mathbf{R})$, which has dimension 4 [since, for example, the standard basis: $\binom{1\ 0}{0\ 0}$, $\binom{0\ 1}{0\ 0}$, $\binom{0\ 0}{0\ 1}$, $\binom{0\ 0}{0\ 1}$, $\binom{0\ 0}{0\ 1}$, has size 4]. [It is also acceptible to state and apply: $\dim(U+W)=\dim(U)+\dim(W)-\dim(U\cap W)$]

[3 marks].

Finally, it is true that $V = U \oplus W$, since we have both V = U + W and $U \cap W = \{0\}$.

[1 mark].

15 marks in total for Question 7. Unseen.

MATH244

8

8. The dual space V^* is defined to be the set of all linear maps from V to \mathbf{R} . Given $\theta, \phi \in V^*$, we can define $\theta + \phi$ by: $(\theta + \phi)(x) = \theta(x) + \phi(x)$, for all $x \in V$. Similarly, for $\lambda \in \mathbf{R}$, define $\lambda \theta$ by $(\lambda \theta)(x) = \lambda(\theta(x))$, for all $x \in V$. Given a basis $\{x_1, \ldots, x_n\}$ for V, the i-th member of the dual basis, ϕ_i , is defined to be the unique linear map from V to \mathbf{R} such that $\phi_i(x_i) = 1$ and $\phi_i(x_j) = 0$, for all $j \neq i$. Suppose $f \in V^*$; define $\lambda_j = f(x_j)$ for all j; then $(\lambda_1 \phi_1 + \ldots + \lambda_n \phi_n)(x_j) = \lambda_j \cdot \phi_j(x_j)$ [since $\phi_i(x_j) = 0$, for all $j \neq i$] = λ_j [since $\phi_j(x_j) = 1$]. Hence, f and $\lambda_1 \phi_1 + \ldots + \lambda_n \phi_n$ both take the same values on each of $x_1, \ldots x_n$, giving that $f = \lambda_1 \phi_1 + \ldots + \lambda_n \phi_n$ [since any linear map is completely determined by its values on a basis]. Hence, $\{\phi_1, \ldots, \phi_n\}$ spans V^* . Now suppose that $\lambda_1 \phi_1 + \ldots + \lambda_n \phi_n = 0$ for some $\lambda_1, \ldots, \lambda_n$. Then, for any j, $(\lambda_1 \phi_1 + \ldots + \lambda_n \phi_n)(x_j) = 0$, and so $\lambda_j \cdot 1 = 0$; hence $\lambda_1 = \ldots = \lambda_n = 0$, and so ϕ_1, \ldots, ϕ_n are linearly independent. Hence $\{\phi_1, \ldots, \phi_n\}$ is a basis for V^* .

[9 marks] Bookwork

In the given example, $\phi_1((x,y)) = ax + by \in V^*$ is defined to satisfy $\phi_1(v_1) = 1$ and $\phi_1(v_2) = 0$; similarly, $\phi_2((x,y)) = cx + dy \in V^*$ is defined to satisfy $\phi_2(v_1) = 0$ and $\phi_2(v_2) = 1$.

[2 marks]

That is: 2a - 5b = 1 and a - b = 0, which has solution: a = -1/3, b = -1/3, so that ϕ_1 is defined by: $\phi_1((x,y)) = -(1/3)x - (1/3)y$. Similarly, 2c - 5d = 0 and c - d = 1, which has solution: c = 5/3, d = 2/3, so that ϕ_2 is defined by: $\phi_2((x,y)) = (5/3)x + (2/3)y$. Hence, $\phi_1((2,3)) = -5/3$ and $\phi_2((2,3)) = 16/3$.

[4 marks] Seen similar in exercises

15 marks in total for Question 8

9. The law of inertia says that, if A is any real symmetric matrix, then there is an invertible matrix P such that P^TAP is diagonal; further, all such diagonal representations of A have the same number p of positive entries, and n of negative entries. The *signature* is then p-n.

[4 marks]

For the given matrix A, we first construct (A|I), and then diagonalise A by applying: step 1, $R_2 \to R_2 - R_1$ and $C_2 \to C_2 - C_1$; step 2, $R_3 \to R_3 - 3R_2$ and $C_3 \to C_3 - 3C_2$; only the column operation is applied to I:

$$\begin{pmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 1 & 0 & -3 & | & 0 & 1 & 0 \\ 0 & -3 & -5 & | & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & 1 & -1 & 0 \\ 0 & -1 & -3 & | & 0 & 1 & 0 \\ 0 & -3 & -5 & | & 0 & 0 & 1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 0 & | & 1 & -1 & 3 \\ 0 & -1 & 0 & | & 0 & 1 & -3 \\ 0 & 0 & 4 & | & 0 & 0 & 1 \end{pmatrix}.$$

Taking

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 4 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & -1 & 3 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{pmatrix},$$

we then have: $D = P^T A P$, and so D is a diagonal form for A.

[8 marks].

The signature is 2-1=1. A is not positive definite, since not all entries in the leading diagonal of D are positive.

[3 marks] Seen similar in exercises.

10.(i) The order k is the smallest integer ≥ 1 such that $g^k = e$. Two groups G and H are isomorphic if there is a map $\theta: G \to H$ which is bijective (1-1 and onto) and a homomorphism $(\theta(g_1 *_1 g_2) = \theta(g_1) *_2 \theta(g_2)$ for all $g_1, g_2 \in G$). Suppose there is a $g \in G$ of order k. Then k satisfies $g^k = e_G$ and is the smallest such. Then $\theta(g^k) = \theta(e_G) = e_H$, giving: $\theta(g)^k = e_H$, since θ is a homomorphism. So, $h^k = e_H$, where $h = \theta(g)$. Imagine that $h^r = e_H$ for some $1 \leq r < k$. Then $\theta^{-1}(h^r) = \theta^{-1}(e_H) = e_G$; that is: $g^r = \theta_G$, contradicting the assumption that k is the smallest integer ≥ 1 such that $g^k = e_G$. Hence order (h) = k, as required.

[7 marks] Bookwork

(ii) A presentation of the given group G is $\langle \sigma, \rho | \sigma^2 = \rho^n = e, \rho \sigma = \sigma \rho^{-1} \rangle$. Here, σ is a fixed reflection, and ρ is a rotation $2\pi/n$. A presentation of H is $\langle \rho | \rho^n = e \rangle$.

[5 marks] From lectures

Finally, R_6 contains an element (namely ρ) of order 6, whereas the orders of the elements in D_6 are: 1,2,2,2,3,3. So D_6 and R_6 are not isomorphic.

[3 marks] Unseen