SECTION A

1. The set $\{v_1, \ldots v_k\}$ spans V if every $v \in V$ can be written as a linear combination $v = \lambda_1 v_1 + \ldots \lambda_k v_k$, for some $\lambda_1, \ldots, \lambda_k \in \mathbf{R}$.

[2 marks]. Definition from lectures.

First put u_1, u_2, u_3 as the rows of a matrix, and use row operations to reduce to echelon form:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 2 & 3 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Therefore the space U is spanned by $\{(1,0,2),(0,1,-1)\}$ which are clearly linearly independent and so give a basis for U.

Similarly put w_1, w_2, w_3 as the rows of a matrix, and use row operations to reduce to echelon form:

$$\begin{pmatrix} 1 & 3 & -1 \\ 1 & 4 & -2 \\ 2 & 7 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & -1 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Therefore the space W also has the same basis as U, namely: $\{(1,0,2),(0,1,-1)\}$, and so U=W.

[7 marks]. Seen similar in exercises.
9 marks in total for Question 1

2. A group is a set G together with a binary operation * such that: (1) for all $g_1, g_2 \in G$, $g_1 * g_2 \in G$; (2) for all $g_1, g_2, g_3 \in G$, $g_1 * (g_2 * g_3) = (g_1 * g_2) * g_3$; (3) there exists an element $e \in G$ such that, for all $g \in G$, e * g = g * e = g; (4) for every $g \in G$, there exists $g^{-1} \in G$ such that $g * g^{-1} = g^{-1} * g = e$. If G,H are groups, then a map $\phi:G\to H$ is a homomorphism if, for all $g_1,g_2\in G,$ $\phi(g_1 *_1 g_2) = \phi(g_1) *_2 \phi(g_2)$, where $*_1$ is the group law in G and $*_2$ is the group law in H. The map ϕ is injective if, for all $g_1, g_2 \in G$, $\phi(g_1) = \phi(g_2) \Rightarrow g_1 = g_2$. The map ϕ is surjective if, for all $h \in H$, there exists $g \in G$ such that $\phi(g) = h$.

[5 marks]. Standard definitions from lectures.

For any $g_1, g_2 \in G$ we have $\phi(g_1+g_2) = \begin{pmatrix} 2(g_1+g_2) & g_1+g_2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2g_1 & g_1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 2g_2 & g_2 \\ 0 & 0 \end{pmatrix} = \phi(g_1) + \phi(g_2).$ Hence ϕ is a homomorphism.

For any $g_1, g_2 \in G$, $\phi(g_1) = \phi(g_2) \Rightarrow \binom{2g_1 \ g_1}{0 \ 0} = \binom{2g_2 \ g_2}{0 \ 0} \Rightarrow g_1 = g_2$, so that ϕ is injective.

The element $\binom{0\ 0}{1\ 0} \in H$ does not occur as $\phi(g)$ for any $g \in G$ (since $\phi(g)$ always has 00 as its bottom row), so that ϕ is not surjective.

[4 marks]. Seen somewhat similar in exercises.

9 marks in total for Question 2

3

3. Let $e_1 = 1$, $e_2 = x$, $e_3 = x^2$. Then $L(e_1) = L(1) = 1 = 1 \cdot e_1 + 0 \cdot e_2 + 0 \cdot e_3$, so that the first column of the matrix should have entries 1, 0, 0. Similarly, $L(e_2) = 0 \cdot e_1 + 1 \cdot e_2 + 1 \cdot e_3$ and $L(e_3) = 0 \cdot e_1 + 1 \cdot e_2 + 1 \cdot e_3$, so that the matrix is:

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

[3 marks]

If we now compute $\det(\lambda I - M) = (\lambda - 1)((\lambda - 1)^2 - 1) = \lambda(\lambda - 1)(\lambda - 2)$, we see that the possible eigenvalues are $\lambda = 0, 1, 2$.

When $\lambda=0$, a vector $v=a+bx+cx^2$ is an eigenvector with eigenvalue 0 iff $L(v)=0\cdot v$ iff $a+(b+c)x+(b+c)x^2=0$ iff a=0 and b+c=0 iff a=0 and c=-b iff v is of the form $bx-bx^2$ ($b\neq 0$).

When $\lambda=1$, a vector $v=a+bx+cx^2$ is an eigenvector with eigenvalue 1 iff $L(v)=1\cdot v$ iff $a+(b+c)x+(b+c)x^2=a+bx+cx^2$ iff b+c=b and b+c=c iff b=c=0 iff v is of the form $a\ (a\neq 0)$.

When $\lambda = 2$, a vector $v = a + bx + cx^2$ is an eigenvector with eigenvalue 2 iff $L(v) = 2 \cdot v$ iff $a + (b+c)x + (b+c)x^2 = 2a + 2bx + 2cx^2$ iff a = 2a and b+c = 2b and b+c = 2c iff a = 0 and c = b iff v is of the form $bx + bx^2$ ($b \neq 0$).

[6 marks] Seen similar in exercises.

4. (i) First note that $\sigma_{\ell}, \sigma_m, \rho_{A,2\alpha}$ all leave A unchanged, so that $\sigma_m \sigma_{\ell}(A) = A = \rho_{A,2\alpha}(A)$. Now, let B be any point on ℓ distinct from A, let $B' = \sigma_m(B)$ and let n be the line through A and B'. Let the point Q be the intersection of m and the line BB'. Now, |AQ| = |AQ| and |BQ| = |B'Q| and angle AQB equals angle AQB' equals $\pi/2$. So, triangle AQB is congruent to AQB', giving that |AB| = |AB'| and angle QAB' is the same as angle BAQ, namely: α . It follows that $B' = \rho_{A,2\alpha}(B)$. Further, $\sigma_{\ell}(B) = B$, since B lies on ℓ . So, we've shown that $\sigma_m \sigma_{\ell}(B) = B' = \rho_{A,2\alpha}(B)$. Similarly, let k be the line through A at angle $-\alpha$ from ℓ , and let C be any point on k distinct from A. By a similar argument to above, $\sigma_m \sigma_{\ell}(C) = \rho_{A,2\alpha}(C)$. This shows that $\sigma_m \sigma_{\ell}$ and $\rho_{A,2\alpha}$ agree on the three non-collinear points A, B, C. Since these are isometries, and since any isometry is determined by its effect on 3 non-collinear points, we conclude that $\sigma_m \sigma_{\ell} = \rho_{A,2\alpha}$, as required [it helps also to draw a quick diagram of the above].

[5 marks]. Bookwork from lectures.

(ii) Let r be the line through B at angle $-\beta/2$ from s. By part (i), we have: $\sigma_s\sigma_r=\rho_{B,2(\beta/2)}=\rho_{B,\beta}$. Similarly, let t be the line through B at angle $\beta/2$ from s. By part (i), we have: $\sigma_t\sigma_s=\rho_{B,2(\beta/2)}=\rho_{B,\beta}$. So, $\rho_{B,\beta}\sigma_s=\sigma_s\rho_{B,\beta}\iff (\sigma_t\sigma_s)\sigma_s=\sigma_s(\sigma_s\sigma_r)\iff \sigma_t(\sigma_s\sigma_s)=(\sigma_s\sigma_s)\sigma_r\iff \sigma_t=\sigma_r\iff t=r\iff the$ angle between r and t is 0 or $\pi\iff \beta/2+\beta/2=0$ or π [since the angle from r to t is the "angle from r to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t to t is the "angle from t to t plus angle from t plus angle from

[5 marks]. Seen similar in exercises.10 marks in total for Question 4

5. We compute: $f(u_1, u_1) = 1 \cdot 1 + (-1) \cdot 1 + 2 \cdot (-1) \cdot (-1) = 2$, $f(u_1, u_2) = 1 \cdot 1 + (-1) \cdot 1 + 2 \cdot (-1) \cdot 2 = -4$, $f(u_2, u_1) = 1 \cdot 1 + 2 \cdot 1 + 2 \cdot 2 \cdot (-1) = -1$, $f(u_2, u_2) = 1 \cdot 1 + 2 \cdot 1 + 2 \cdot 2 \cdot 2 = 11$. So, the matrix of f wrt u_1, u_2 is $A = \begin{pmatrix} 2 & -4 \\ -1 & 11 \end{pmatrix}$. [3 marks]

Similarly, $f(v_1, v_1) = 2 \cdot 2 + 1 \cdot 2 + 2 \cdot 1 \cdot 1 = 8$, $f(v_1, v_2) = 2 \cdot 0 + 1 \cdot 0 + 2 \cdot 1 \cdot 3 = 6$, $f(v_2, v_1) = 0 \cdot 2 + 3 \cdot 2 + 2 \cdot 3 \cdot 1 = 12$, $f(v_2, v_2) = 0 \cdot 0 + 3 \cdot 0 + 2 \cdot 3 \cdot 3 = 18$. So, the matrix of f wrt v_1, v_2 is $B = \begin{pmatrix} 8 & 6 \\ 12 & 18 \end{pmatrix}$.

[3 marks]

Now, note that $v_1=1\cdot u_1+1\cdot u_2$, so that "1" and "1" are the entries of the first column of the change-of-basis matrix. Similarly, $v_2=(-1)\cdot u_1+1\cdot u_2$, so that "-1" and "1" are the entries of the second column of the change-of-basis matrix. This gives $P=\begin{pmatrix} 1&-1\\1&1\end{pmatrix}$ as the required change-of-basis matrix. Finally, check that: $P^TAP=\begin{pmatrix} 1&-1\\1&1\end{pmatrix}^T\begin{pmatrix} 2&-4\\-1&11\end{pmatrix}\begin{pmatrix} 1&-1\\1&1\end{pmatrix}=\begin{pmatrix} 1&1\\-1&11\end{pmatrix}\begin{pmatrix} 1&-1\\1&1\end{pmatrix}=\begin{pmatrix} 1&7\\-3&15\end{pmatrix}\begin{pmatrix} 1&-1\\1&1\end{pmatrix}=\begin{pmatrix} 8&6\\12&18\end{pmatrix}=B$, as required.

[3 marks]. Whole question: seen similar (once) in exercises.

9 marks in total for Question 5

6. A matrix M is orthogonal if $MM^T = I$. Let $P = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$ and $Q = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}$. Then

$$(PQ)^{T} = \begin{pmatrix} a_{1}a_{2} + b_{1}c_{2} & a_{1}b_{2} + b_{1}d_{2} \\ c_{1}a_{2} + d_{1}c_{2} & c_{1}b_{2} + d_{1}d_{2} \end{pmatrix}^{T} = \begin{pmatrix} a_{1}a_{2} + b_{1}c_{2} & c_{1}a_{2} + d_{1}c_{2} \\ a_{1}b_{2} + b_{1}d_{2} & c_{1}b_{2} + d_{1}d_{2} \end{pmatrix}$$
$$= \begin{pmatrix} a_{2} & c_{2} \\ b_{2} & d_{2} \end{pmatrix} \begin{pmatrix} a_{1} & c_{1} \\ b_{1} & d_{1} \end{pmatrix} = Q^{T}P^{T}.$$

[4 marks]

I is orthogonal, since $II^T=I$. If P,Q are orthogonal then $PP^T=I$ and $QQ^T=I$, so that $(PQ)(PQ)^T=(PQ)Q^TP^T=P(QQ^T)P^T=PIP^T=PP^T=I$, so that PQ is also orthogonal. Also, if P is orthogonal, then $P^T=P^{-1}$, so that $P^{-1}(P^{-1})^T=P^{-1}(P^T)^T=P^{-1}P=I$, so that P^{-1} is also orthogonal. Hence, the set of orthogonal 2×2 matrices contains the identity, is closed, contains inverses, and is associative (since matrix multiplication is always associative), and so is a group. [5 marks]. Seen on exercise sheet.

SECTION B

7. In U, taking a = b = 0 gives that $\binom{0\ 0}{0\ 0} \in U$. If $u = \binom{a\ a+b}{a+b\ b} \in U$ and $\lambda \in \mathbf{R}$, then $\lambda u = \lambda \binom{a\ a+b}{a+b\ b} = \binom{\lambda a\ \lambda a+\lambda b}{\lambda a+\lambda b\ \lambda b} \in U$. Also, if $u_1 = \binom{a_1\ a_1+b_1}{a_1+b_1}$ and $u_2 = \binom{a_2\ a_2+b_2\ b_2}{a_2+b_2\ b_2}$ are in U then $u_1 + u_2 = \binom{a_1\ a_1+b_1\ b_1}{a_1+b_1\ b_1} + \binom{a_2\ a_2+b_2\ b_2}{a_2+b_2\ b_2} = \binom{a_1+a_2\ a_1+a_2+b_1+b_2\ b_1+b_2}{b_1+b_2} \in U$. Hence U is a subspace of V. Proof that W is a subspace of V is almost identical.

[3 marks]. Standard.

Typical member of U is $\binom{a}{a+b} = a\binom{1}{1} + b\binom{0}{1} + b\binom{0}{1}$, so that $\binom{1}{1} \cdot \binom{0}{1} \cdot \binom{0}{1}$ span U. Also, $\lambda_1\binom{1}{1} + \lambda_2\binom{0}{1} = \binom{0}{0} \Rightarrow \binom{\lambda_1}{\lambda_1 + \lambda_2} = \binom{0}{0} \Rightarrow \lambda_1 = \lambda_2 = 0$, so that $\binom{1}{1} \cdot \binom{0}{1} \cdot \binom{0}{1}$ are linearly independent. Hence this gives a basis for U and so U has dimension 2. Similarly, W has basis $\{\binom{1}{1} \cdot \binom{0}{1} \cdot \binom{0}{1} \cdot \binom{-1}{1} \}$ and so W also has dimension 2.

[4 marks]. Standard.

For $\binom{a\ b}{c\ d}$ to be in $U\cap W$, we must have b=c=a+d (to be in U) and b=c=a-d (to be in W); but $a+d=a-d\iff d=0$, and so b=c=a and d=0. So, $U\cap W=\{\binom{a\ a}{a\ 0}:a\in R\}$. Clearly (shown as above) $\binom{1\ 1}{1\ 0}$ is a basis for $U\cap W$ and so $U\cap W$ has dimension 1.

[3 marks]. Harder, but seen similar.

Note that U+W is spanned by the union of a basis for U and a basis for W. So, it is spanned by the four vectors: $\binom{1}{1}\binom{0}{1}\binom{0}{1}\binom{0}{1}$, which is a basis for U, and $\binom{1}{1}\binom{0}{1}\binom{0}{-1}\binom{0}{-1}$, which is a basis for W. Then $\binom{1}{1}\binom{0}{1}$ has been repeated twice, and so U+W is spanned by the three vectors: $\binom{1}{1}\binom{0}{1}\binom{0}{1}\binom{0}{1}\binom{0}{-1}$. These are linearly independent, since $\lambda_1\binom{1}{1}\binom{1}{1}+\lambda_2\binom{0}{1}\binom{1}{1}+\lambda_3\binom{0}{-1}\binom{0}{1}=\binom{0}{0}\binom{0}{0}\Rightarrow\binom{\lambda_1}{\lambda_1+\lambda_2-\lambda_3}\frac{\lambda_1+\lambda_2-\lambda_3}{\lambda_2+\lambda_3}=\binom{0}{0}\binom{0}{0}\Rightarrow\lambda_1=\lambda_1+\lambda_2-\lambda_3=\lambda_2+\lambda_3=0\Rightarrow\lambda_1=\lambda_2-\lambda_3=\lambda_2+\lambda_3=0\Rightarrow\lambda_1=\lambda_2=\lambda_3=0$. Hence these three vectors form a basis for U+W, giving that U+W has dimension 3.

[3 marks]. Harder. Unseen.

Finally note that, since $\dim(U \cap W) = 1$, we do not have $U \cap W = \{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\}$, and so $U + W = U \oplus W$ (note that the definition of $S = U \oplus W$ is that both S = U + W and $U \cap W = \{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\}$).

[2 marks]. Seen similar in exercises (once).

8. (i) The rank of f is the dimension of the image of f. The nullity of f is the dimension of the kernel of f. That rank & nullity theorem states that $rank(f) + nullity(f) = \dim(V)$.

[3 marks] From lectures.

(ii) Let B be the matrix of F wrt the basis E_1, E_2, E_3, E_4 . We have $F(E_1) = \binom{1\ 0}{2\ 0} = 1 \cdot E_1 + 0 \cdot E_2 + 2 \cdot E_3 + 0 \cdot E_4$, so that the entries of the first column of B are $\frac{9}{2}$. Similarly, we have $F(E_2) = \binom{0\ 2}{0\ 2} = 0 \cdot E_1 + 2 \cdot E_2 + 0 \cdot E_3 + 2 \cdot E_4$, which gives the entries of the second column of B. Similarly $F(E_3) = \binom{1\ 0}{0\ 0} = 1 \cdot E_1 + 0 \cdot E_2 + 0 \cdot E_3 + 0 \cdot E_4$, which gives the entries of the third column of B. Finally, $F(E_4) = \binom{0\ 1}{0\ 1} = 0 \cdot E_1 + 1 \cdot E_2 + 0 \cdot E_3 + 1 \cdot E_4$, which gives the entries of the fourth column of B. So, B is: $\binom{1\ 0\ 1\ 0}{0\ 2\ 0\ 1\ 0}$.

[3 marks]. Seen similar in exercises.

Applying column operations to B as follows: $C_3 \to C_3 - C_1$, then $C_2 \to (1/2)C_2$, then $C_4 \to C_4 - C_2$, and then $C_3 \to (-1/2)C_3$, gives the matrix $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$, which is in column echelon form. The first three columns of B give a basis for the image of F, that is, a basis for the image of F is: $1 \cdot E_1 + 0 \cdot E_2 + 2 \cdot E_3 + 0 \cdot E_4$, $0 \cdot E_1 + 1 \cdot E_2 + 0 \cdot E_3 + 1 \cdot E_4$ and $0 \cdot E_1 + 0 \cdot E_2 + 1 \cdot E_3 + 0 \cdot E_4$, that is to say, a basis for the image of F is: $\{\binom{1 & 0}{2 & 0}, \binom{0 & 1}{0 & 1}, \binom{0 & 0}{1 & 0}\}$. [Alternative Method: we could have found a basis for the image of F directly from the definition of F (without needing B) by observing that $F(\binom{a & b}{c & d}) = \binom{a+c & 2b+d}{2a & 2b+d} = a\binom{1 & 0}{2 & 0} + (b+2d)\binom{0 & 1}{0 & 1} + c\binom{1 & 0}{0 & 0}$, so that $\binom{1 & 0}{2 & 0}, \binom{0 & 1}{0 & 1}, \binom{1 & 0}{0 & 0}$ span the image of F, and are clearly linearly independent, and so give a basis for the image of F].

[3 marks]. Unseen.

Solving for $B {a \choose b \choose d} = {0 \choose 0 \choose 0}$, we first apply row operations to B as follows: $R_3 \to R_3 - 2R_1$ and $R_4 \to R_4 - R_2$ gives the row echelon form matrix: ${1 \choose 0} {1 \choose 0} {2 \choose 0} {0 \choose 0} {0 \choose 0}$. This gives only two independent equations: a+c=0, 2b+d=0 and -2c=0, equivalent to a=c=0 and d=-2b, so that the general solution for a,b,c,d is: 0,b,0,-2b, that is: $0\cdot E_1 + bE_2 + 0\cdot E_3 - 2bE_4$. The typical member of the kernel of F is then: ${0 \choose 0-2b} = b{0 \choose 0-2}$. So, ${0 \choose 0-2}$ spans the kernel of F and is clearly linearly independent. So, ${0 \choose 0-2}$ is a basis for the kernel of F. [Alternative Method: we could have found a basis for the kernel of F directly from the definition of F (without needing F) by observing that ${a \choose c} = b$ (a becomes a property of the kernel of F) as a basis for the kernel of F. [Alternative Method: F] and F[a becomes F[a bec

Since a basis for the image of F has three elements, it follows that $\operatorname{rank}(F) = 3$. Since a basis for the kernel of F has one element, it follows that $\operatorname{nullity}(F) = 1$. Also, $\dim(V) = 4$, since $\{E_1, E_2, E_3, E_4\}$ is a basis for V. So, the rank & nullity theorem is verified in this case as: 3 + 1 = 4.

[6 marks]. Seen (somewhat) similar in exercises.

15 marks in total for Question 8

9

9. We take A, the matrix representing the quadratic form q(x, y, z), form (A|I), and then use row & column operations $R_2 \to R_2 + R_1$ & $C_2 \to C_2 + C_1$ followed by: $R_3 \to R_3 - (1/2)R_2$ $C_3 \to C_3 - (1/2)C_2$, with only the column operations being performed on I, as follows:

$$\begin{pmatrix} 1 & -1 & 0 & | & 1 & 0 & 0 \\ -1 & 3 & 1 & | & 0 & 1 & 0 \\ 0 & 1 & 4 & | & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & 1 & 1 & 0 \\ 0 & 2 & 1 & | & 0 & 1 & 0 \\ 0 & 1 & 4 & | & 0 & 0 & 1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 0 & | & 1 & 1 & -\frac{1}{2} \\ 0 & 2 & 0 & | & 0 & 1 & -\frac{1}{2} \\ 0 & 0 & \frac{7}{2} & | & 0 & 0 & 1 \end{pmatrix}.$$

[7 marks].

Now let:
$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 3 & 1 \\ 0 & 1 & 4 \end{pmatrix}, \ D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{5}{2} \end{pmatrix}, \ P = \begin{pmatrix} 1 & 1 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix},$$

$$Q = P^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix},$$

then $D = P^TAP$ and $A = Q^TDQ$. Here, A represents the quadratic form wrt x, y, z and D represents it wrt new variables r, s, t given by $\binom{r}{t} = Q\binom{r}{t}$, that is: r = x - y, s = y + z/2, t = z.

[3 marks]

The rank of q is 3 (which is the number of nonzero entries of D), and the signature of q is the number of positive entries of D minus the number of negative entries = 3 - 0 = 3. The surface q(x, y, z) = 2 becomes $r^2 + 2s^2 + (7/2)t^2 = 2$, in r, s, t coordinates, which is an ellipsoid. The sketch should look identical to the standard sketch of an ellipsoid, except that the x, y, z axes should be labelled r, s, t (if drawn it wrt r, s, t). [If drawn wrt x, y, z then it should be made clear in the diagram that the axes of the surface are: y = z = 0, x - y = z = 0, x - y = z = 0.

[5 marks]. Whole question: seen similar in exercises.

10.(i) Suppose that e_1 and e_2 were both (2-sided) identity elements. Then $e_1 * e_2 = e_1$, since e_2 is an identity. Similarly, $e_1 * e_2 = e_2$. Hence $e_1 = e_2$.

[2 marks]. Seen in lectures.

Let $\alpha * \beta = e$. Let δ be the (2-sided) inverse of α , and multiply both sides of the equation on the left by δ . Then $\delta * (\alpha * \beta) = \delta * e = \delta$ (since e is identity), so that $(\delta * \alpha) * \beta = \delta$ (assoc.) and so $\beta = \delta$. Now multiply both sides on the right by α , giving $\beta * \alpha = \delta * \alpha = e$.

[2 marks]. Unseen

(ii) Suppose $\alpha * \beta = \alpha * \gamma$. Multiply both sides on the left by δ , the inverse of α . Then $\delta * (\alpha * \beta) = \delta * (\alpha * \gamma)$, giving $(\delta * \alpha) * \beta = (\delta * \alpha) * \gamma$ [by associativity], and so $e * \beta = e * \gamma$, finally giving: $\beta = \gamma$, as required. The values of $\alpha * g$, as g runs through all the members of the group give the ' α ' row of the group table; if two of these were the same, we would have $\alpha * \beta = \alpha * \gamma$ for distinct $\beta \neq \gamma$, contradicting the previous result. Similarly, $\beta * \alpha = \gamma * \alpha \Rightarrow \beta = \gamma$ gives that no element can be repeated in the same column.

[3 marks]. Seen on exercise sheet.

(iii) From the already provided entry E * F = E, we deduce (after multiplying both sides on left by the inverse of E) that F is the identity element. This allows us to fill in the bottom row as ABCDEF and similarly the right hand column. Having done this, we use the given entry B * A = F, the identity element, and the second part of (i), to deduce that A * B = F. At this point we have:

*	A	В	С	D	\mathbf{E}	F
A	D	F	?	С	?	Α
В	F	?	?	?	?	В
\mathbf{C}	?	?	?	?	?	\mathbf{C}
D	В	?	A	\mathbf{E}	?	D
\mathbf{E}	?	A	В	?	?	\mathbf{E}
F	Α	В	С	C ? ? E ? D	\mathbf{E}	F

From now on, we can fill in all the remaining entries by using only the 'noelement-repeated-in-the-same-row-or-column' rule. For example, this forces B*Dto be A. The following gives a possible order in which the remaining 16 entries can be fixed using this rule.

*	A	В	\mathbf{C}	D	\mathbf{E}	F
A	D	F	3	С	2	A
В	F	6	4	1	5	В
\mathbf{C}	9	7	3 4 14 A B C	15	13	\mathbf{C}
D	В	8	A	\mathbf{E}	11	D
\mathbf{E}	10	A	В	16	12	\mathbf{E}
F	Α	В	\mathbf{C}	D	\mathbf{E}	F

The final table must then be

*	Α	В	$^{\mathrm{C}}$	D C A B E F D	\mathbf{E}	\mathbf{F}
Α	D	F	Е	С	В	A
В	F	\mathbf{E}	D	A	\mathbf{C}	В
\mathbf{C}	\mathbf{E}	D	\mathbf{F}	В	A	\mathbf{C}
D	В	\mathbf{C}	A	\mathbf{E}	F	D
\mathbf{E}	С	A	В	\mathbf{F}	D	\mathbf{E}
\mathbf{F}	Α	В	С	D	\mathbf{E}	\mathbf{F}

[6 marks]. Seen similar on Ex Sheet (but this one is harder).

Finally, note that then (A*A)*A = D*A = B, but A*(A*A) = A*D = C, violating associativity. Since the above is the unique way of completing the table in a way compatible with (i),(ii), and since any group (by definition) satisfies associativity, there is no way of completing the given table to form a group table.

[2 marks]. Unseen.