2MP43 (MATH243) January 1999 Examination

Time allowed: Two Hours and a Half

Candidates should attempt the whole of Section A and three questions from Section B

SECTION A

1. Let f(x+iy) = u(x,y) + iv(x,y), where x, y, u and v are real. Write down the Cauchy-Riemann equations which hold where f is holomorphic.

Find real and imaginary parts of the function $f(z) = z(\bar{z} + 1)$. Show that f satisfies both Cauchy-Riemann equations only at z = 0.

Find a holomorphic function on C with imaginary part v(x, y) = -xy.

[10 marks]

2. Sketch the path $\gamma: [-1,2] \to \mathbf{C}$ given by

$$\gamma(t) = \begin{cases} (1-i)t, & -1 \le t \le 0 \\ t, & 0 \le t \le 2. \end{cases}$$

Evaluate $\int_{\gamma} (\operatorname{Im} z)^2 dz$.

[8 marks]

2MP43

2

6

3. Evaluate the following integrals, giving brief reasons:

$$\int\limits_{\gamma(0;1)} \frac{dz}{z^2 + 4} \, ; \qquad \int\limits_{\gamma(-i;2)} \frac{dz}{z^2 + 4} \, ; \qquad \int\limits_{\gamma(0;4)} \frac{dz}{z^2 + 4} \, .$$

Here $\gamma(a; r)$ denotes the circle, centre a and radius r, oriented anticlockwise.

[10 marks]

4. Find the 5-jet at 0 (the Taylor series up to and including the term z^5) of each of the following functions:

(i)
$$e^{z^3} \sin z$$
; (ii) $\frac{2-z^2}{\cos z}$.

[7 marks]

5. Determine the type of singularity exhibited by the function

$$f(z) = \left(2 + \frac{\pi}{z}\right) \tan^2 z$$

at (a) $z = -\pi/2$, (b) z = 0, (c) $z = \pi/2$. If the singularity is a simple pole determine the residue, and if it is removable determine the limiting value.

[10 marks]

6. (a) Find the residues of the function

$$f(z) = \frac{1}{z^2 + 4z + 1} \,.$$

(b) Use contour integration and the result of (a) to determine

$$\int_{0}^{2\pi} \frac{d\theta}{\cos\theta + 2} \, .$$

[10 marks]

SECTION B

- 7. (a) Write down the Laplace equation for a function u(x, y) of two real variables.
 - (b) For what value(s) of the constant k can the function

$$u(x,y) = e^{-4y}\cos kx$$

be the real part of a function f(z) = f(x + iy) holomorphic on **C**?

- (c) Write down the expression of the derivative of a holomorphic function in terms of the partial derivatives of its real part. Apply this to determine the derivative g(z) = f'(z) of a holomorphic function with the real part you found in (b). Express g in terms of z (not x and y).
 - (d) For the function g found in (c), solve the equation

$$g(z) = -4i.$$

[All the solutions must be found.]

[15 marks]

2MP43

4

6

8. (i) Prove that, if $z \neq 0, -1$,

$$\sum_{n=0}^{r} (-1)^n z^{-n} = \frac{1 + (-1)^r z^{-r-1}}{1 + z^{-1}}.$$

Hence show that $\sum_{n=0}^{\infty} (-1)^n z^{-n}$ is convergent for |z|>1 and find a formula for $\sum_{k=0}^{-\infty} (-1)^k z^k$.

Describe the behaviour of the last series for $|z| \leq 1$.

(ii) Find the radius of convergence R of the series

$$\sum_{n=1}^{\infty} \frac{2^n - 1}{n^4} z^n .$$

Determine the convergence or divergence of this series for |z| = R. [Make sure that your argument applies to all z with |z| = R.]

[15 marks]

9. (a) Sketch the annulus $\{z \in \mathbb{C} : 2 < |z-1| < 4\}$, and mark the poles of the function

$$f(z) = \frac{6}{z^2 - 9}$$

on your sketch.

- (b) Find the Laurent expansion of f(z) valid in the above annulus.
- (c) Determine whether this expansion converges at z = -1.

[15 marks]

10. Sketch the path $\gamma_R : [0, \pi] \to \mathbf{C}$ defined by $\gamma_R(t) = Re^{it}$, where R > 0. Let a be a positive real number. Prove that

$$\int_{\gamma_R} \frac{ze^{iz}}{(z^2 + a^2)^2} dz \to 0 \quad \text{as} \quad R \to \infty .$$

By integrating $(ze^{iz})/(z^2+a^2)^2$ along a suitable contour, find

$$\int\limits_0^\infty \frac{x\sin x}{(x^2+a^2)^2} \, dx \, .$$

[15 marks]

11. Find the principal value of the integral

$$\int\limits_0^\infty \frac{\cos x}{x^4 - 1} \, dx$$

by integrating an appropriate holomorphic function round a large semicircle in the upper half-plane, indented both at 1 and -1.

State without proof any results you use on the limiting values of the integrals round the semicircular parts of the contour.

[15 marks]