THE UNIVERSITY of LIVERPOOL

SECTION A

1. Let f(x+iy) = u(x,y) + iv(x,y), where x, y, u and v are real. Write down the Cauchy-Riemann equations which hold where f is holomorphic.

Find the real and imaginary parts of the function $f(z) = (z-2)(z-\overline{z})$. Show that f satisfies both Cauchy-Riemann equations if and only if z=2.

Find a holomorphic function on **C** with the imaginary part $v(x, y) = x^3 - 3xy^2$.

[10 marks]

2. Sketch the path $\gamma: [-\frac{1}{4}, \pi] \to \mathbf{C}$ given by

$$\gamma(t) = \begin{cases} 2t+1, & -\frac{1}{4} \le t \le 0, \\ e^{-it}, & 0 \le t \le \pi. \end{cases}$$

Evaluate $\int_{\gamma} \frac{1}{\left(\frac{1}{z}\right)} dz$.

[8 marks]

Evaluate the following integrals, giving brief reasons:

$$\int\limits_{\gamma(-\pi i;2)} \frac{dz}{z^2 + 4iz}\,; \qquad \int\limits_{\gamma(\pi i;2)} \frac{dz}{z^2 + 4iz}\,; \qquad \int\limits_{\gamma(-1;5)} \frac{dz}{z^2 + 4iz}\,.$$

Here $\gamma(a;r)$ denotes the circle, centre a and radius r, oriented anticlockwise.

[10 marks]

THE UNIVERSITY of LIVERPOOL

4. Find the 5-jet at 0 (the Taylor series up to and including the term z^5) of each of the following functions:

(i)
$$e^{1-\cos z^2}$$
; (ii) $\frac{1}{2+\sinh^2(2z)}$.

[8 marks]

5. Determine the type of singularity exhibited by the function

$$f(z) = \frac{\sin z \cdot \cot 2z}{(z + \frac{\pi}{2})^3}$$

at (a) z = 0, (b) $z = -\pi/2$, (c) $z = \pi/2$. If the singularity is a simple pole determine the residue, and if it is removable determine the limiting value.

[10 marks]

6. (a) Find the residues of the function

$$f(z) = \frac{1}{20z^2 - 41z + 20}.$$

(b) Use contour integration and the result of (a) to determine

$$\int_{0}^{2\pi} \frac{dt}{40\cos t - 41} \, .$$

[9 marks]

THE UNIVERSITY of LIVERPOOL

SECTION B

- Write down the Laplace equation for a function u(x,y) of two real variables.
 - (b) For what values of a real constant k can the function

$$u(x, y) = \cosh x \cdot \cos(ky)$$

be the real part of a function f(z) = f(x + iy) holomorphic on **C**?

- (c) Write down the expression of the derivative of a holomorphic function in terms of the partial derivatives of its real part. Apply this to determine the derivative g(z) = f'(z) of a holomorphic function with the real part u you obtained in (b). Express g in terms of z (not x and y).
 - (d) Show that, for the function q found in (c),

$$g(z) = 0 \iff z = \pi ni \text{ for some integer } n.$$

[15 marks]

8. (i) Prove that, if $z \neq 0$ and $z^3 \neq 2$, then

$$\sum_{n=0}^{r} \left(\frac{2}{z^3}\right)^n = \frac{1 - \frac{2^{r+1}}{z^{3r+3}}}{1 - \frac{2}{z^3}}.$$

Hence show that $\sum\limits_{n=0}^{\infty} 2^n z^{-3n}$ is convergent for $|z|>2^{1/3}$ and find a formula for the sum of this series.

Assuming that the term-by-term differentiation is valid, find the sum of the series

$$\sum_{n=1}^{\infty} n 2^n z^{-3n}$$

for $|z| > 2^{1/3}$.

(ii) Find the radius of convergence R of the series

$$\sum_{n=0}^{\infty} \frac{n4^n}{\sqrt{n^2+1}} z^n.$$

Determine the convergence or divergence of this series for |z|=R. [Make sure that your argument applies to all z with |z| = R.

[15 marks]

THE UNIVERSITY of LIVERPOOL

9. (a) Sketch the annulus $\{z \in \mathbb{C} : 3 < |z+4| < 5\}$, and mark the poles of the function

 $f(z) = \frac{8}{z^2 + 6z - 7}$

on your sketch.

- (b) Find the Laurent expansion of f(z) valid in the above annulus.
- (c) Determine whether this expansion converges at z = -2 + 3i.

[15 marks]

10. Sketch the path $\gamma_R:[0,\pi]\to \mathbf{C}$ defined by $\gamma_R(t)=Re^{it}$, where R>0.

Prove that

$$\int\limits_{\gamma_R} \frac{e^{4iz}}{(z^2 - 2z + 2)^2} \, dz \to 0 \quad \text{as} \quad R \to \infty \, .$$

By integrating $e^{4iz}/(z^2-2z+2)^2$ along a suitable contour, find

$$\int_{-\infty}^{\infty} \frac{\sin(4x)}{(x^2 - 2x + 2)^2} \, dx \, .$$

[15 marks]

11. Let c be a positive constant. Find the principal value of the integral

$$\int_{0}^{\infty} \frac{\cos x}{x^4 - c^4} \, dx$$

by integrating an appropriate holomorphic function round a large semicircle in the upper half-plane, indented both at c and -c.

State without proof any results you use on the limiting values of the integrals round the semicircular parts of the contour.

[15 marks]