MATH241 Exam September 2000, Solutions

1.

- a) Neither increasing nor decreasing. Bounded above and below. Supremum and maximum are 2, Infimum and minimum are 0.
- b) Increasing, not decreasing. Bounded above and below. Infimum and minimum are 0, supremum is 2, no maximum.
- **2.** $a_0 = 2$, $a_1 = 1$, $a_2 = 2$, $a_3 = 1$.

The formulae for the convergents p_n/q_n give $p_0 = 2$, $p_1 = 3$, $p_2 = 8$, and $p_3 = 11$; and $q_0 = 1$, $q_1 = 1$, $q_2 = 3$, and $q_3 = 4$. Thus the first four convergents are 2/1, 3/1, 8/3, and 11/4.

- 3. a) Open; b) Neither; c) Neither.
- **4.** f^4 has $2^4 = 16$ fixed points, of which $2^2 = 4$ are also fixed points of f^2 , and hence are not period 4 points. Thus f has 12 period 4 points, which constitute 12/4 = 3 period 4 orbits.
- 5. The transition matrix is

$$\left(\begin{array}{cc} \frac{1}{2} & \frac{1}{3} \\ \\ \frac{1}{2} & \frac{2}{3} \end{array}\right),$$

where the first row and column correspond to attending, and the second to missing.

The long term proportion of time spent in each of the two states is given by a probability column eigenvector $\begin{pmatrix} x \\ y \end{pmatrix}$ of this matrix. Thus

$$x/2 + y/3 = x$$
$$x + y = 1,$$

with solutions x = 2/5 and y = 3/5. Thus she attends 2/5 of her lectures in the long run.

6. The fixed points are given by f(x) = x, or $x^3 - 3x^2 + 2x = 0$, with solutions x = 0, x = 1, and x = 2.

The stabilities can be determined by evaluating $f'(x) = 3x^2 - 6x + 3$ at each fixed point: we have f'(0) = 3, f'(1) = 0, and f'(2) = 3. Hence x = 1 is a stable fixed point, the other two are unstable.

7. |t| is an even function, so its Fourier series expansion is of the form

$$a_0/2 + \sum_{r=1}^{\infty} a_r \cos rt,$$

where

$$a_0 = rac{1}{\pi} \int_{-\pi}^{\pi} |t| \, dt = rac{2}{\pi} \int_{0}^{\pi} t \, dt = \pi,$$

and

$$a_r = \frac{1}{\pi} \int_{-\pi}^{\pi} |t| \cos rt \, dt = \frac{2}{\pi} \int_{0}^{\pi} t \cos rt \, dt = -\frac{2}{r\pi} \int_{0}^{\pi} \sin rt \, dt = -\frac{2}{r^2\pi} (1 - (-1)^r)$$

for $r \geq 1$. Hence the Fourier series expansion is

$$\pi/2 + \sum_{r=1}^{\infty} \frac{2((-1)^r - 1)}{r^2 \pi} \cos rt.$$

8. The coefficients of the Fourier expansion of t^2 are $a_0 = 2\pi^2/3$, $a_r = 4(-1)^r/r^2$ for $r \ge 1$, and $b_r = 0$ for all r. Parseval's theorem states that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)^2 dt = \frac{a_0^2}{4} + \frac{1}{2} \sum_{r=1}^{\infty} (a_r^2 + b_r^2).$$

In this case, we have

$$\int_{-\pi}^{\pi} f(t)^2 dt = \int_{-\pi}^{\pi} t^4 dt = 2\frac{\pi^5}{5},$$

so Parseval's theorem gives

$$\frac{\pi^4}{5} = \frac{\pi^4}{9} + \sum_{r=1}^{\infty} \frac{8}{r^4},$$

Or

$$\sum_{r=1}^{\infty} \frac{1}{r^4} = \frac{\pi^4}{8} \left(\frac{1}{5} - \frac{1}{9} \right) = \frac{\pi^4}{90}.$$

9. We use the following theorem from lectures: Suppose that $f:[a,b] \to \mathbf{R}$ is an increasing function, that a sequence (x_n) is defined iteratively using f from some starting value $x_0 \in [a,b]$, and that $x_1 \leq x_0$. If there is a fixed

point of f in $[a, x_0]$, then (x_n) is an decreasing sequence which tends to a limit l, which is the largest fixed point of f in $[a, x_0]$.

In this example f(x) = x/2 + 7/(2x), so the fixed points of f are $\pm \sqrt{7}$. Also $f'(x) = 1/2 - 7/(2x^2)$, which is non-negative for $x \ge \sqrt{7}$, so we work in the interval $[a, b] = [\sqrt{7}, 3]$. Since $x_1 = 1 + 3/2 + 7/6 < x_0$, it follows from the theorem that (x_n) is decreasing and tends to $\sqrt{7}$ as $n \to \infty$.

The completeness axiom states that any non-empty subset of \mathbf{R} which is bounded above has a least upper bound (and any non-empty subset of \mathbf{R} which is bounded below has a greatest lower bound.

Let (x_n) be an decreasing sequence which is bounded below: by the completeness axiom, it has a greatest lower bound l (so $x_n \ge l$ for all n). Given any $\epsilon > 0$, there is some N such that $l \le x_N < l + \epsilon$ (otherwise $l + \epsilon$ would be a lower bound), and since (x_n) is decreasing this means that $l \le x_n < l + \epsilon$ for all $n \ge N$. Thus $x_n \to l$ as $n \to \infty$.

10. S is countable if there is a one-to-one correspondence between it and N: or equivalently if there is a sequence (x_n) which includes all of the elements of S.

To show that **Q** is countable, define a sequence (y_n) by $y_{j(j+1)/2+k} = (1+k)/(1+j-k)$ for $j \geq 0$ and $0 \leq k \leq j$. This sequence includes all positive rationals, since if p, q > 0 then $y_n = p/q$ when $n = (p^2 + 2pq + q^2 - p - 3q - 2)/2$. Hence the sequence $(x_n) = (0, y_0, -y_0, y_1, -y_1, \ldots)$ includes every element of **Q**.

To show that **R** is uncountable, it is enough to show that the set S of real numbers in [0,1] whose decimal expansions only involve the digits 5 or 6 is uncountable. Let (x_n) $(n \ge 1)$ be any sequence of elements of S, and let the *i*th decimal digit of x_n be d_n^i . Then

$$x = \sum_{i=1}^{\infty} \frac{11 - d_i^i}{10^i}$$

is an element of S which is not included in the sequence. Hence S is uncountable.

The proof that the set S in part c) is countable is similar to the proof that \mathbf{Q} is countable: the set A_k of points (x, y, z) in S with x + y + z = k is finite, and a sequence (x_n) which includes all elements of S can be constructed by listing in turn the elements of A_3 , A_4 , A_5 , and so on.

11. Let \triangleright be the order on the positive integers given by

$$3 \triangleright 5 \triangleright 7 \triangleright 9 \triangleright 11 \triangleright \dots$$

$$6 \rhd 10 \rhd 14 \rhd 18 \rhd 22 \rhd \dots$$

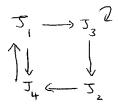
 $12 \rhd 20 \rhd 28 \rhd 36 \rhd 44 \rhd \dots$

. . .

$$\ldots \rhd 16 \rhd 8 \rhd 4 \rhd 2 \rhd 1.$$

If $f:[0,1] \to [0,1]$ is continuous and has a periodic orbit of period n, then it also has periodic orbits of period m for all m with $n \rhd m$.

The Markov graph of (13425) is



Since there are no primitive loops of length 3 in the Markov graph, it is possible to have a map $f:[0,1]\to [0,1]$ which has a periodic orbit of the given pattern, but no period 3 orbit. By Sharkovsky's theorem, all periods other than 3 must be present.

If $\pi \in S_5$ is a pattern of a periodic orbit of a reverse unimodal map, then it is a cyclic permutation which is reverse unimodal: i.e. it is decreasing on $\{1, 2, ..., k\}$ and increasing on $\{k, k+1, ..., 5\}$ for some $k \in \{1, 2, 3, 4, 5\}$.

Let $\pi \in S_5$ be a reverse unimodal permutation.

If k = 1 or k = 5 then π cannot be cyclic (in the former case π is the identity, and in the latter $\pi(1) = 5$ and $\pi(5) = 1$.

Clearly either $\pi(1) = 5$ or $\pi(5) = 5$, and hence if π is cyclic then $\pi(1) = 5$.

If k = 2 then $\pi(2) = 1$ and hence $\pi = (15432)$.

If k = 3 then $\pi(3) = 1$ and π is determined by $\pi(2)$: inspecting the three possibilities, only (15423) is cyclic.

If k=4 then $\pi(4)=1$ and π is determined by $\pi(5)$: inspecting the three possibilities, only $(1\,5\,3\,2\,4)$ is cyclic

Thus the three period 5 patterns which can arise from a unimodal map are (15432), (15423), and (15324).

12. A period n orbit P of $f: \mathbf{R} \to \mathbf{R}$ is stable if each $x \in P$ has a neighbourhood N such that $f^{kn}(y) \to x$ as $k \to \infty$ for all $y \in N$.

It is unstable if each $x \in P$ has a neighbourhood N such that $|f^n(y) - x| > |y - x|$ for all $y \in N$ with $y \neq x$.

The multiplier is defined to be $(f^n)'(x)$, where x is any point of P: equivalently, it is $f'(x_1)f'(x_2) \dots f'(x_n)$, where $P = \{x_1, \dots, x_n\}$.

Let $f_r(x) = r - x^2$. The fixed points of f_r are solutions of $f_r(x) = x$, namely

$$x = \frac{-1 \pm \sqrt{1 + 4r}}{2}$$

(which exist when $r \geq -1/4$). The fixed points of f_r^2 are solutions of $f_r(f_r(x)) = x$, i.e.

$$r - (r - x^2)^2 = x,$$

or

$$(x^2 + x - r)(x^2 - x + (1 - r)) = 0$$

(using the known factor x^2+x-r to factorize the quartic). Hence the period 2 points of f_r are the solutions of $x^2-x+1-r=0$, namely

$$x = \frac{1 \pm \sqrt{4r - 3}}{2}.$$

Thus r has no period 2 orbits for $r \leq 3/4$, and a single period 2 orbit when r > 3/4.

A periodic orbit is stable when its multiplier lies in (-1,1). The multiplier of the period 2 orbit of f_r (when r > 3) is

$$f_r'\left(\frac{1+\sqrt{4r-3}}{2}\right)f_r'\left(\frac{1-\sqrt{4r-3}}{2}\right),$$

which, since $f'_r(x) = -2x$, is equal to

$$(1+\sqrt{4r-3})(1-\sqrt{4r-3})=1-(4r-3)=4(1-r).$$

Thus the period 2 orbit is stable provided -1 < 4(1-r) < 1, i.e. 3/4 < r < 5/4. Thus the period 2 orbit is stable for 3/4 < r < 5/4.

13.

a) t is an odd function, so its Fourier series expansion consists of sine terms only. The coefficients are given by

$$b_r = \frac{1}{\pi} \int_{-\pi}^{\pi} t \sin rt \, dt = \frac{1}{\pi} \left[\frac{t \cos rt}{r} \right]_{\pi}^{-\pi} + \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\cos rt}{r} \, dt = \frac{2(-1)^{r+1}}{r}.$$

Hence the Fourier series expansion is

$$\sum_{r=1}^{\infty} \frac{2(-1)^{r+1}}{r} \sin rt.$$

b) Integrating the Fourier series expansion of $t^4 - \pi^4/5$ term by term from 0 to u, we find that the Fourier series expansion of $u^5/5 - (\pi^4/5)u$ is

$$8\sum_{r=1}^{\infty} \frac{(-1)^r (\pi^2 r^2 - 6)}{r^5} \sin ru,$$

and, replacing u with t and substituting the Fourier series expansion for t obtained in part a), it follows that the Fourier series expansion for t^5 is

$$5\left(\frac{\pi^4}{5}\sum_{r=1}^{\infty}\frac{2(-1)^{r+1}}{r}\sin rt + 8\sum_{r=1}^{\infty}\frac{(-1)^r(\pi^2r^2 - 6)}{r^5}\sin rt,\right)$$

or

$$\sum_{r=1}^{\infty} \left(\frac{2(-1)^{r+1} \pi^4}{r} + \frac{40(-1)^r (\pi^2 r^2 - 6)}{r^5} \right) \sin rt.$$

c) In general, term by term differentiation of a the Fourier series expansion for f(t) yields the Fourier series expansion for f'(t) provided that (the periodic extension of) f(t) is continuous and piecewise continuously differentiable.