MATH241 Exam September 2000, Solutions

a) Neither increasing nor decreasing. Bounded above and below. Supre-
mum and maximum are 2, Infimum and minimum are 0.

b) Increasing, not decreasing. Bounded above and below. Infimum and
minimum are 0, supremum is 2, no maximum.

2. a0:2,a1:1,a2:2,a3:1.

The formulae for the convergents p,/q, give pg = 2, p1 = 3, p2 = 8,
and pg = 11; and g9 = 1, g1 = 1, g2 = 3, and g3 = 4. Thus the first four
convergents are 2/1, 3/1, 8/3, and 11/4.

3. a) Open; b) Neither; ¢) Neither.

4. f* has 2* = 16 fixed points, of which 22 = 4 are also fixed points of f2,
and hence are not period 4 points. Thus f has 12 period 4 points, which
constitute 12/4 = 3 period 4 orbits.

5. The transition matrix is

DOl
Wl

Wi

1
2
where the first row and column correspond to attending, and the second to

missing.
The long term proportion of time spent in each of the two states is given

by a probability column eigenvector ( ;j ) of this matrix. Thus

z/24+y/3 = z
z+y = 1,

with solutions z = 2/5 and y = 3/5. Thus she attends 2/5 of her lectures
in the long run.

6. The fixed points are given by f(zr) = =, or 2° — 322 + 2z = 0, with
solutions z =0, z =1, and z = 2.

The stabilities can be determined by evaluating f'(z) = 322 — 6z + 3 at
each fixed point: we have f/(0) =3, f/(1) =0, and f/(2) = 3. Hence z =1
is a stable fixed point, the other two are unstable.



7. |t| is an even function, so its Fourier series expansion is of the form

o
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for » > 1. Hence the Fourier series expansion is
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8. The coefficients of the Fourier expansion of ¢ are ag = 27%/3, a, =
4(=1)"/r? for r > 1, and b, = 0 for all r. Parseval’s theorem states that
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In this case, we have
f(t)2dt:/ thdt =2

so Parseval’s theorem gives

9. We use the following theorem from lectures: Suppose that f:[a,b] - R
is an increasing function, that a sequence (z,,) is defined iteratively using f
from some starting value z¢ € [a,b], and that z1 < zo. If there is a fixed



point of f in [a, x|, then (z,) is an decreasing sequence which tends to a
limit [, which is the largest fixed point of f in [a, zo].

In this example f(z) = x/2 + 7/(2z), so the fixed points of f are ++/7.
Also f'(z) = 1/2 — 7/(2z?), which is non-negative for x > /7, so we work
in the interval [a,b] = [/7,3]. Since z; = 1+3/2+7/6 < x, it follows from
the theorem that (z,) is decreasing and tends to /7 as n — oo.

The completeness axiom states that any non-empty subset of R which
is bounded above has a least upper bound (and any non-empty subset of R
which is bounded below has a greatest lower bound.

Let (z,) be an decreasing sequence which is bounded below: by the
completeness axiom, it has a greatest lower bound [ (so z, > [ for all n).
Given any € > 0, there is some N such that | < zy < [ + € (otherwise
! + € would be a lower bound), and since (z,,) is decreasing this means that
[ <z,<l+eforalln>N. Thus z, -1 as n — cc.

10. S is countable if there is a one-to-one correspondence between it and N:
or equivalently if there is a sequence (z,,) which includes all of the elements
of S.

To show that Q is countable, define a sequence (y,) by yj(j+1)/24k =
(1+k)/(14+j5—k) for j > 0 and 0 < k < j. This sequence includes all positive
rationals, since if p, ¢ > 0 then y,, = p/q whenn = (p?+2pg+q¢*>—p—3q—2)/2.
Hence the sequence (z,,) = (0,v0, —¥0, Y1, —¥1,--.) includes every element
of Q.

To show that R is uncountable, it is enough to show that the set S of
real numbers in [0, 1] whose decimal expansions only involve the digits 5 or
6 is uncountable. Let (z,) (n > 1) be any sequence of elements of S, and
let the ith decimal digit of z,, be d’,. Then
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is an element of S which is not included in the sequence. Hence S is un-
countable.
The proof that the set S in part c) is countable is similar to the proof that

Q is countable: the set Ay of points (z,y, z) in S with z+y+ 2z = k is finite,
and a sequence (z,) which includes all elements of S can be constructed by
listing in turn the elements of Az, A4, As, and so on.

11. Let > be the order on the positive integers given by

36> 7>9>11...



6>10>14p> 18> 22> ...
12p>20>28>36 > 441> ...

L1684 2D 1.

If f:[0,1] — [0,1] is continuous and has a periodic orbit of period n,
then it also has periodic orbits of period m for all m with n > m.
The Markov graph of (13425) is

5
—ji — 3,
o
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Since there are no primitive loops of length 3 in the Markov graph, it
is possible to have a map f:[0,1] — [0, 1] which has a periodic orbit of the
given pattern, but no period 3 orbit. By Sharkovsky’s theorem, all periods
other than 3 must be present.

If # € S5 is a pattern of a periodic orbit of a reverse unimodal map, then
it is a cyclic permutation which is reverse unimodal: i.e. it is decreasing on
{1,2,...k} and increasing on {k,k +1,...,5} for some k € {1,2,3,4,5}.

Let m € S5 be a reverse unimodal permutation.

If k =1 or k =5 then 7 cannot be cyclic (in the former case 7 is the
identity, and in the latter 7(1) =5 and «(5) = 1.

Clearly either (1) = 5 or 7(5) = 5, and hence if 7 is cyclic then w(1) = 5.

If K =2 then 7(2) =1 and hence 7 = (1543 2).

If K = 3 then m(3) = 1 and 7 is determined by 7(2): inspecting the three
possibilities, only (15423) is cyclic.

If £ = 4 then 7(4) = 1 and 7 is determined by 7(5): inspecting the three
possibilities, only (15324) is cyclic

Thus the three period 5 patterns which can arise from a unimodal map
are (15432), (15423), and (15324).

12. A period n orbit P of f:R — R is stable if each z € P has a neigh-
bourhood N such that f*"(y) — z as k — oo for all y € N.

It is unstable if each z € P has a neighbourhood N such that |f"(y) —
z| > |y — z| for all y € N with y # z.

The multiplier is defined to be (f™)'(z), where z is any point of P:
equivalently, it is f'(z1)f'(z2) ... f'(zn), where P = {z1,...,zn}.



Let f-(z) = r — z%. The fixed points of f, are solutions of f,(z) = z,
namely

—1++1+4r

r = 9

(which exist when » > —1/4). The fixed points of f2 are solutions of
fr(fr(z)) =z, ie.
2)2

r—(r—z°)° =u,

or
(@ +z—r)2®—z+(1—-1)=0
(using the known factor 22+ —r to factorize the quartic). Hence the period

2 points of f, are the solutions of z? — z + 1 — r = 0, namely

1++4r —3

r = 9

Thus 7 has no period 2 orbits for » < 3/4, and a single period 2 orbit when
r > 3/4.

A periodic orbit is stable when its multiplier lies in (—1,1). The multi-
plier of the period 2 orbit of f, (when r > 3) is

y(1+V4r =3\ ,, (1 —+V4r =3
() 5 (12

which, since f](z) = —2z, is equal to

(I1+V4r —3)(1—V4r—-3)=1—(4r —3) =4(1 — ).
Thus the period 2 orbit is stable provided —1 < 4(1—7) < 1,ie. 3/4<r <
5/4. Thus the period 2 orbit is stable for 3/4 < r < 5/4.
13.

a) t is an odd function, so its Fourier series expansion consists of sine
terms only. The coefficients are given by
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Hence the Fourier series expansion is
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b)

Integrating the Fourier series expansion of t* — 7% /5 term by term from

0 to u, we find that the Fourier series expansion of u’/5 — (7*/5)u is

sin ru,

o0 2,.2
(=1)"(x"r" —6)
8. — =
r=1
and, replacing u with ¢ and substituting the Fourier series expansion
for ¢ obtained in part a), it follows that the Fourier series expansion

for t° is

or
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In general, term by term differentiation of a the Fourier series expan-
sion for f(t) yields the Fourier series expansion for f/(¢) provided that
(the periodic extension of) f(¢) is continuous and piecewise continu-
ously differentiable.



