MATH241 Exam January 2000, Solutions

a) Neither increasing nor decreasing. Bounded above and below. Supre-
mum and maximum are 2, Infimum and minimum are 0.

b) Neither increasing nor decreasing. Bounded below but not above. In-
fimum and minimum are —2, no supremum or maximum.

2. a0:3,a1:7,a2:15,a3:1.

The formulae for the convergents p,/q, give po = 3, p1 = 22, py = 333,
and p3 = 355; and g9 = 1, g1 = 7, go = 106, and g3 = 113. Thus the first
four convergents are 3/1, 22/7, 333/106, and 355/113.

3. a) Neither; b) Closed; c¢) Open.

4. f* has 3* = 81 fixed points, of which 32 = 9 are also fixed points of f2,
and hence are not period 4 points. Thus f has 72 period 4 points, which
constitute 72/4 = 18 period 4 orbits.

5. The transition matrix is
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where the first row and column correspond to OK, and the second to Right
Then.
The long term proportion of time spent in each of the two states is given

by a probability column eigenvector ( ; ) of this matrix. Thus

2z/3+y/4 = «z
r+y = 1,

with solutions z = 3/7 and y = 4/7. Thus he starts 3/7 of his lectures with
OK in the long run.

6. Fixed points are given by 1 — 22 = z, or 22 + z — 1 = 0, with solutions
T = (—-1++/5)/2.

Period two points are points which aren’t fixed, but are solutions of
f(f(x)=z,0or 1—(1—-2%)2 =2z, 0r 2* — 222 + £ = 0. It is clear that z = 0
and z = 1 are solutions of this equation, and are hence period 2 points: the
other two solutions must be the fixed points of f.



7. f(t) —1/2 is an odd function, so the Fourier series expansion of f(t) is

of the form
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Hence the Fourier series expansion of f(t) is
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8. The coefficients of the Fourier expansion of |¢| are ag = 7, a, = 2((—1)" —

1)/r?m for r > 1, and b, = 0 for all 7. Parseval’s theorem states that
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In this case, we have
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so Parseval’s theorem gives



9. We use the following theorem from lectures: Suppose that f:[a,b] - R
is an increasing function, that a sequence (z,) is defined iteratively using f
from some starting value zy € [a,b], and that z1 > zy. If there is a fixed
point of f in [zg,b], then (z,) is an increasing sequence which tends to a
limit [, which is the smallest fixed point of f in [z, b].

In this example f(z) = z + 1 — x2/5, so the fixed points of f are ++/5.
Also f'(z) = 1—2z/5, which is non-negative for z < 5/2, so we work in the
interval [a, b] = [2,5/2], which contains /5. . Since z; = 24+1—4/5 > o, it
follows from the theorem that (z,,) is increasing and tends to /5 as n — oo.

The completeness axiom states that any non-empty subset of R which
is bounded above has a least upper bound (and any non-empty subset of R
which is bounded below has a greatest lower bound).

Let (z,) be an increasing sequence which is bounded above: by the
completeness axiom, it has a least upper bound [ (so z, < [ for all n).
Given any € > 0, there is some N such that | — e < zy < [ (otherwise
[ — € would be an upper bound), and since (z,,) is increasing this means that
l—e<zp, <lforalln> N. Thus z, — [ as n — 0.

10. S is countable if there is a one-to-one correspondence between it and N:
or equivalently if there is a sequence (z,) which includes all of the elements
of S.

To show that Q is countable, define a sequence (y,) by YiG+1)/24k =
(14k)/(14+j—k) for j > 0 and 0 < k < j. This sequence includes all positive
rationals, since if p, ¢ > 0 then y,, = p/q when n = (p?>+2pg+q¢*>—p—3q—2)/2.
Hence the sequence (z,) = (0,y0, —Yo0,¥1, —Y1,--.) includes every element
of Q.

To show that R is uncountable, it is enough to show that the set S of
real numbers in [0, 1] whose decimal expansions only involve the digits 5 or
6 is uncountable. Let (x,) (n > 1) be any sequence of elements of S, and
let the ith decimal digit of z,, be d,. Then

is an element of S which is not included in the sequence. Hence S is un-
countable.

To show that the set S in part c) is uncountable, let (z,) be any sequence
of subsets of N. Let A={n € N:n ¢ z,}. Then A € S is not included in

the sequence (zy,).



11. Let > be the order on the positive integers given by
357911 ...

6>10> 14> 18> 221> ...
12p>20>28> 36> 441> ...

L.>16>8>4>2D 1.

If f:[0,1] — [0,1] is continuous and has a periodic orbit of period n,
then it also has periodic orbits of period m for all m with n > m.
The Markov graph of (12435) is
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There is a loop J1 — J3 — Jy — J1 of length 3, and hence there is
a fixed point z of f3 with itinerary k(z) = (134)*. Since this is not the
itinerary of a fixed point, f has a period 3 orbit, and hence by Sharkovsky’s
theorem has periodic orbits of every period.

If 7 € S5 is a pattern of a periodic orbit of a unimodal map, then it is
a cyclic permutation which is unimodal: i.e. it is increasing on {1,2,...k}
and decreasing on {k,k + 1,...,5} for some k € {1,2,3,4,5}.

Let m € S5 be a unimodal permutation.

If k =1or k=5 then 7 cannot be cyclic (in the former case w(1) =5
and m(5) = 1, and in the latter 7 is the identity).

Clearly either (1) = 1 or 7(5) = 1, and hence if 7 is cyclic then 7 (5) = 1.

If k = 2 then 7(2) = 5 and 7 is determined by 7 (1): inspecting the three
possibilities, only (13425) is cyclic.

If k = 3 then m(3) = 5 and 7 is determined by 7(4): inspecting the three
possibilities, only (12435) is cyclic.

If K =4 then 7(4) = 5 and hence 7 = (12345).

Thus the three period 5 patterns which can arise from a unimodal map
are (13425), (12435), and (12345).

12.
a) f:R — Riseven if f(t) = f(—t) for all t € R.



If f(t) is even then f(t)sin rt is odd for all r, and hence the coefficients
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of the sine terms in its Fourier series expansion vanish for all r.
b) |sint| is an even function, so its Fourier series expansion is of the form
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Hence the Fourier series expansion is
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c¢) The series converges pointwise if for all t* € R and all € > 0, there is an
N such that

<e€
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for alln > N.
It converges uniformly if for all € > 0 there is an N such that

<€

‘f(t) - Z .fr(t)

forallm > N and all t € R.
The Fourier Series Theorem says that if f(¢) is continuous and piecewise
differentiable, then its Fourier series expansion converges to it uniformly.



Since |sint| is continuous and piecewise differentiable, the convergence in
this case is uniform.

13. The coefficients ¢, are given by
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Hence the Fourier series expansion of f(t) is
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To apply Parseval’s theorem, observe that
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as required.



