SECTION A

1. Find the general solution of the linear ordinary differential equation

$$\frac{dy}{dx} + \tan(x) y = 2x \cos(x) ,$$

leaving your answer in the form y = f(x).

[4 marks]

Solution [Homework]

The integrating factor is

$$\mu(x) = e^{\int \tan(x) dx} = e^{-\log(\cos(x))} = 1/\cos(x).$$

Therefore the equation becomes

$$\frac{1}{\cos(x)}\frac{dy}{dx} + \frac{\sin(x)}{\cos^2(x)}y = \frac{d}{dx}\left(\frac{y}{\cos(x)}\right) = 2x$$

Therefore

$$\frac{y}{\cos(x)} = x^2 + A,$$

so the solution is

$$y(x) = A\cos(x) + x^2\cos(x) .$$

2. Solve the initial value problem

$$\frac{dy}{dx} = \frac{3x+y}{x} \; ; \qquad y(1) = 2 \; .$$

[5 marks]

Solution [Homework]

This is a homogeneous equation. The substitution y(x) = xv(x) gives

$$x\frac{dv}{dx} + v = 3 + v$$

so

$$\frac{dv}{dx} = 3/x$$

SO

$$v(x) = 3\ln(x) + c$$

and the general solution is

$$y(x) = 3x \ln(x) + cx$$

Putting x = 1 gives y(1) = c, so c = 2 and the solution is

$$y(x) = 3x \ln(x) + 2x.$$

3. Find the general solution of the following system of equations:

$$\frac{dx}{dt} = x - 2y ,$$

$$\frac{dy}{dt} = 5x + 3y .$$

[9 marks]

Solution [Homework]

In vector form, we have

$$\frac{d\mathbf{y}}{dt} = A\mathbf{y}$$
 where $A = \begin{pmatrix} 1 & -2 \\ 5 & 3 \end{pmatrix}$.

The characteristic polynomial is

$$\lambda^2 - 4\lambda + 13 = 0$$

so

$$\lambda = 2 \pm 3i$$
.

The eigenvector **v** corresponding to $\lambda = 2 + 3i$ is

$$\mathbf{v} = \left(\begin{array}{c} 2\\ -1 - 3i \end{array}\right)$$

Hence the general solution is

$$\mathbf{y}(t) = Ae^{2t} \begin{pmatrix} 2\cos(3t) \\ -\cos(3t) + 3\sin(3t) \end{pmatrix} + Be^{2t} \begin{pmatrix} 2\sin(3t) \\ -\sin(3t) - 3\cos(3t) \end{pmatrix} ,$$

or, componentwise,

$$x(t) = 2Ae^{2t}\cos(3t) + 2Be^{2t}\sin(3t) ,$$

$$y(x) = Ae^{2t}(-\cos(3t) + 3\sin(3t)) - Be^{2t}(\sin(3t) + 3\cos(3t)) .$$

This question may also be solved by substitution or using the Laplace transform.

4. The Laplace transform of a function f(t) is defined by

$$\mathcal{L}\left\{f(t)\right\} = \widetilde{f}(s) = \int_0^\infty f(t)e^{-st}t) dt.$$

(i) Show that

$$\mathcal{L}\left\{tf(t)\right\} = -\frac{d\widetilde{f}}{ds} .$$

[3 marks]

Solution [Bookwork]

$$\mathcal{L}\left\{tf'(t)\right\} = \int_0^\infty f(t)te^{-st} dt = \int_0^\infty -f(t)\frac{d}{ds}\left(e^{-st}\right) dt$$
$$= -)\frac{d}{ds}\int_0^\infty f(t)e^{-st} dt = -\frac{d\widetilde{f}}{ds}.$$

(ii) Compute the Laplace transform of $t^2 \sin(3t)$.

[5 marks]

Solution [Bookwork]

The Laplace transform of $t^2 \sin(3t)$ is second derivative of the Laplace transform of $\sin(3t)$, so

$$\mathcal{L}\left\{t^{2}\sin(3t)\right\} = \frac{d^{2}}{ds^{2}}\left(\frac{3}{s^{2}+9}\right)$$

$$= \frac{d}{ds}\left(\frac{-6s}{(s^{2}+9)^{2}}\right)$$

$$= \frac{-6}{(s^{2}+9)^{2}} + \frac{24}{(s^{2}+9)^{3}}$$

$$= \frac{-6s^{2}-30}{(s^{2}+9)^{3}}.$$

5. Calculate the Fourier cosine series of period π for the function f(x) defined for $0 \le x \le \pi$ by

$$f(x) = \sin(x) .$$

Hint: For any A and B,

$$\sin(A)\cos(B) = \frac{1}{2}\left(\sin(A+B) + \sin(A-B)\right).$$
 [7 marks]

Solution [Homework]

$$a_{0} = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \sin(x) dx = \frac{2}{\pi} \left[-\cos(x) \right]_{0}^{\pi} = \frac{2}{\pi} \left(1 - \cos(\pi) \right) = 4/\pi$$

$$a_{n} = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos(nx) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \sin(x) \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2} \left(\sin((1+n)x) + \sin((1-n)x) \right) dx$$

$$= \frac{1}{\pi} \left[\frac{-\cos((1+n)x)}{1+n} + \frac{-\cos((1-n)x)}{1-n} \right]_{0}^{\pi} = \frac{1}{\pi} \left(\frac{1+(-1)^{n}}{1+n} + \frac{1+(-1)^{n}}{1-n} \right)$$

$$= \frac{2(1+(-1)^{n})}{\pi(1-n^{2})}$$

So the Fourier cosine series is

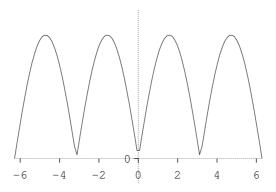
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) = \frac{4}{\pi} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(1 + (-1)^n)}{1 - n^2} \cos(nx)$$
$$= \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{1 - 4n^2} \cos(2nx).$$

Note: Full marks can be obtained without noticing that $a_1 = 0/0$.

Sketch the graph of this cosine series for $-2\pi < x < 2\pi$.

[2 marks]

Solution [Bookwork]



6. The Cauchy-Riemann equations for the real and imaginary parts u(x,y) and v(x,y) of a complex function f(x+iy) are

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad and \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \; .$$

(i) Suppose v(x,y) is given by $v(x,y) = 3x^2y - y^3 + x$. Find a function u(x,y) so that u and v satisfy the Cauchy-Riemann equations.

[6 marks]

Solution:

Integrating the equation

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 3x^2 - 3y^2$$

we find

$$u(x,y) = x^3 - 3xy^2 + k(y)$$

or some function k. Then

$$\frac{\partial u}{\partial y} = -6xy + k'(y) = -6xy - 1 = -\frac{\partial v}{\partial x}$$

so k(y) = -y (plus an arbitrary constant). Therefore

$$u(x,y) = x^3 - 3xy^2 - y.$$

(ii) Find a function f(z) such that f(x+iy)=u(x,y)+iv(x,y).

[3 marks]

Solution [Class]

We have $f(x+iy)=x^3-3xy^2-y+i(3x^2y-y^3+x)$. Taking x=z and y=0 we find $f(z)=z^3+iz.$

7. The function $u(x,t) = F(x)\cos(\lambda ct)$, where c and λ are positive constants, is a nontrivial solution of the wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} .$$

Show that F(x) satisfies the ordinary differential equation

$$F'' + \lambda^2 F = 0.$$

[4 marks]

Solution [Bookwork]

Substituting into the wave equation gives

$$-\lambda^2 c^2 F(x) \cos(\lambda ct) = c^2 F''(x) \cos(\lambda ct) .$$

Cancel $\cos(\lambda ct)$ from each side to give

$$-\lambda^2 F(x) = F''(x)$$

which implies

$$F''(x) + \lambda^2 F(x) = 0.$$

Given that u also satisfies the boundary conditions

$$u(0,t) = u(L,t) = 0 ,$$

show that the possible values of λ are $n\pi/L$, where n is a positive integer, and find the corresponding functions F(x).

[4 marks]

Solution [Bookwork]

The general solution for F(x) is

$$F(x) = A\sin(\lambda x) + B\cos(\lambda x).$$

The boundary conditions give F(0) = F(L) = 0. Now

$$F(0) = A\sin(0) + B\cos(0) = B = 0$$

and then

$$F(L) = A\sin(\lambda L) = 0$$

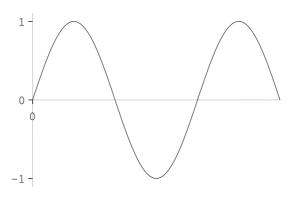
so either A=0 or $\sin(\lambda L)=0$. A=0 gives the trivial solution, so $\sin(\lambda L)=0$ which means $\lambda L=n\pi$ or $\lambda=n\pi/L$ for some positive integer n. Thus

$$\lambda = n\pi/L$$
 and $F_n(x) = \sin\left(\frac{n\pi x}{L}\right)$.

Sketch F(x) on the interval $0 \le x \le L$ for n = 3.

[2 marks]

${\bf Solution} \; [{\rm Bookwork}]$



SECTION B

8. Find the solution of the following ordinary differential equation, using the initial condition y(1) = y'(1) = 0.

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 9y = 27\ln(x) - 4x^2.$$

[15 marks]

Solution [Homework]

Try $y_c(x) = x^m$ as a solution to the complementary equation. We obtain the auxiliary equation

$$m(m-1) - 5m + 9 = 0$$

which has a double root m = 3. Hence the complementary function is

$$y_c(x) = Ax^3 + Bx^3 \ln(x) .$$

[6 marks for this part]

Try particular integral $y_p(x) = a \ln(x) + b + cx^2$. Substituting into the equation gives

$$x^{2}(-a/x^{2}+2c) - 5x(a/x+2cx) + 9(a\ln(x) + b + cx^{2}) = 27\ln(x) - 4x^{2}$$

and simplifying gives

$$9a\ln(x) + (9b - 6a) + cx^2 = 27\ln(x) - 4x^2$$

from which we deduce a = 3, b = 2 and c = -4. Hence the general solution is

$$y(x) = Ax^3 + Bx^3 \ln(x) + 3\ln(x) - 4x^2 + 2.$$

[6 marks for this part]

The derivative of y(x) is

$$y'(x) = 3Ax^2 + Bx^2(3\ln(x) + 1) + 3/x - 8x,$$

so

$$y(1) = A - 2$$
 and $y'(1) = 3A + B - 5$.

Therefore A=2 and B=-1, so

$$y(x) = 2x^3 - x^3 \ln(x) + 3\ln(x) - 4x^2 + 2.$$

[3 marks for this part]

(This problem can also be solved by using the substitution $x = e^t$.)

9.

(a) Find a function h(t) such that the solution of the ordinary differential equation

$$\frac{d^2y}{dt^2} + 4y = g(t)$$

with initial conditions y(0) = y'(0) = 0 is given by the convolution integral

$$\int_0^t g(t-\tau)h(\tau)\,d\tau\;.$$

[6 marks]

Solution:

Take the Laplace transform of both sides to obtain

$$s^2Y(s) + 4Y(s) = G(s).$$

Rearranging gives

$$Y(s) = \frac{1}{s^2 + 4} G(s)$$

so h(t) is the inverse Laplace transform of $1/(s^2+4)$, which gives

$$h(t) = \frac{1}{2}\sin(2t).$$

(b) Show that the Fourier series of the 2π -periodic odd function f(x) defined by f(x) = x for $-\pi \le x \le \pi$ is

$$f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}\sin(nx)}{n} .$$

By evaluating the square integral of f(x) and of its Fourier series, show that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \ .$$

[9 marks]

Solution:

The Fourier coefficients b_n are given by

$$b_n = \frac{2}{\pi} \int_0^{\pi} x \sin(nx) dx = \frac{2}{\pi} \left[\frac{-x \cos(nx)}{n} + \frac{\sin(nx)}{n^2} \right]_0^{\pi}$$
$$= \frac{2}{\pi} \frac{-\pi(-1)^n}{n} = \frac{2(-1)^{n+1}}{n}$$

The square integral of f(x) over $[-\pi, \pi]$ is

$$\int_{-\pi}^{\pi} (f(x))^2 dx = \int_{-\pi}^{\pi} x^2 dx = \left[\frac{x^3}{3} \right]_{-\pi}^{\pi} = \frac{2\pi^3}{3}.$$

The square integral of the Fourier sine series gives

$$\int_{\pi}^{\pi} \left(\sum_{n=1}^{\infty} b_n \sin(nx) \right)^2 dx = \pi \sum_{n=1}^{\infty} b_n^2.$$

Taking $b_n = 2(-1)^{n+1}/n$ gives

$$\frac{2\pi^3}{3} = \int_{-\pi}^{\pi} x^2 dx = \pi \sum_{n=1}^{\infty} \frac{4}{n^2} = 4\pi \sum_{n=1}^{\infty} \frac{1}{n^2},$$

so

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{2\pi^3}{3} \frac{1}{4\pi} = \frac{\pi^2}{6} \,.$$

10. Show that the characteristic curves of the first-order partial differential equation

$$2\frac{\partial u}{\partial x} - xy\frac{\partial u}{\partial y} = u$$

are given by

$$x(t) = x_0 + 2t, \quad y(t) = y_0 e^{-(x_0 t + t^2)}.$$

[6 marks]

Solution [Homework]

The characteristic equations are

$$\frac{dx}{dt} = 2$$
 and $\frac{dy}{dt} = -xy$.

Solving first for x, we find

$$x = x_0 + 2t,$$

so

$$\frac{dy}{dt} = -(x_0 + 2t)y.$$

Solving this by separation of variables we find

$$\ln(y) = -(x_0t + t^2) + \ln(y_0)$$

so

$$y = y_0 e^{-(x_0 t_t^2)}$$
.

By considering the boundary value problem u(0,s) = f(s), or otherwise, find the general solution of this equation.

[9 marks]

Solution [Homework]

The right-hand side gives

$$\frac{du}{dt} = u$$

so

$$u=u_0e^t.$$

The boundary conditions give $x_0 = 0$, $y_0 = s$ and $u_0 = f(s)$, so

$$x = 2t$$
, $y = se^{-t^2}$ and $u = f(s)e^t$.

Therefore

$$t = x/2$$
 and $s = ye^{t^2} = ye^{x^2/4}$,

so the general solution is

$$u(x,y) = f(ye^{x^2/4})e^{x/2}$$
.

11. Write down the general solution of the heat equation

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2}$$

in a bar of length L, whose left and right hand ends are held at temperatures T_0 and T_1 respectively.

[4 marks]

Solution [Bookwork]

$$u(x,t) = T_0 + \frac{x}{L}T_1 + \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{L}\right) e^{-n^2\pi^2\kappa t/L^2}$$
.

Find the particular solution of the heat equation in a bar for which the initial temperature distribution is

$$u(x, 0) = \begin{cases} 0 \text{ °C} & \text{if } 0 < x < L/2 \\ 50 \text{ °C} & \text{if } L/2 < x < L \end{cases}$$

and the ends are held at 20 °C.

/11 marks/

Solution [Homework]

The equilibrium solution is $u_e(x) = 20$ °C. Let $f(x) = u(x, 0) - u_e(x)$. The coefficients of the Fourier sine series of f(x) are

$$b_{n} = \frac{2}{L} \int_{0}^{L/2} -20 \sin\left(\frac{n\pi x}{L}\right) dx + \frac{2}{L} \int_{L/2}^{L} 30 \sin\left(\frac{n\pi x}{L}\right) dx$$

$$= \frac{2}{L} \left[\frac{20L \cos(n\pi x/L)}{n\pi}\right]_{0}^{L/2} + \frac{2}{L} \left[\frac{-30L \cos(n\pi x/L)}{n\pi}\right]_{L/2}^{L}$$

$$= \frac{40 \left(\cos(n\pi/2) - 1\right)}{n\pi} + \frac{60 \left(\cos(n\pi) - \cos(n\pi/2)\right)}{n\pi}$$

$$= \frac{3 \cos(n\pi) - \cos(n\pi/2) - 2}{n\pi} 20 ^{\circ}\text{C}$$

Therefore,

$$u(x,t) = 20 \, ^{\circ}\text{C} \left(1 + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{3\cos(n\pi) - \cos(n\pi/2) - 2}{n} \sin\left(\frac{n\pi x}{L}\right) e^{-n^2\pi^2\kappa t/L^2} \right)$$

12. Show that the function

$$u(x,y) = \sum_{n=1}^{\infty} \sin\left(\frac{n\pi x}{L}\right) \left(A_n \cosh\left(n\pi x/L\right) + B_n \sinh\left(n\pi x/L\right)\right)$$

satisfies Laplace's equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

in the square $0 \le x, y \le L$ with boundary conditions u(0, y) = u(L, y) = 0.

[5 marks]

Solution [Example]

Find the particular solution for which

$$u(x, 0) = 0$$
 and $u(x, L) = x(L - x)$.

[10 marks]

Solution [Homework]

The boundary condition u(x, 0) = 0 implies

$$\sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{L}\right) = 0$$

so the coefficients A_n are all 0.

The boundary condition u(x, L) = 1 gives

$$\sum_{n=1}^{\infty} B_n \sinh(n\pi) \sin\left(\frac{n\pi x}{L}\right) = 1.$$

The Fourier coefficients $b_n = B_n \sinh(n\pi)$ are then given by

$$b_{n} = \frac{2}{L} \int_{0}^{L} x(L-x) \sin\left(\frac{n\pi x}{L}\right) dx$$

$$= \frac{2}{L} \left[\frac{-Lx(L-x)\cos(n\pi x/L)}{n\pi} + \frac{L^{2}(L-2x)\sin(n\pi x/L)}{n^{2}\pi^{2}} - \frac{2L^{3}\cos(n\pi x/L)}{n^{3}\pi^{3}} \right]_{0}^{L}$$

$$= \frac{2}{L} \frac{2L^{3}(1-(-1)^{n})}{n^{3}\pi^{3}} = \frac{4L^{2}}{n^{3}\pi^{3}} \left(1-(-1)^{n}\right).$$

Thus

$$u(x,y) = \frac{4L^2}{\pi^3} \sum_{n=1}^{\infty} \frac{\left(1 - (-1)^n\right)}{n^3 \sinh(n\pi)} \sin\left(\frac{n\pi x}{L}\right) \sinh\left(\frac{n\pi y}{L}\right)$$