## MATH224 September resit Solutions

1. Separate the variables:

$$\int_{2}^{y} (y+3)dy = \int_{0}^{x} (1+x^{2})dx$$

$$\left[y^{2}/2 + 3y\right]_{2}^{y} = \left[x + x^{3}/3\right]_{0}^{x}$$

$$y^{2}/2 + 3y - 2 - 6 = x + x^{3}/3$$

$$i.e.y^{2} + 6y - 16 = 2x + 2x^{3}/3$$

$$(y+3)^{2} = 2x^{3}/3 + 2x + 25$$

$$y+3 = \sqrt{(2x^{3} + 6x + 75)/3}$$

2. Put  $y = x^m$ : then

$$m(m-1) - 2m + 2 = 0$$

$$\Rightarrow (m-2)(m-1) = 0$$

$$\Rightarrow y = Ax + Bx^{2}$$

where A and B are constants.

3.

$$y = 8x - 5\frac{dx}{dt}$$

$$\Rightarrow 5\frac{dy}{dt} = 40\frac{dx}{dt} - 25\frac{d^2x}{dt^2},$$

$$\Rightarrow -6x = 40\frac{dx}{dt} - 25\frac{d^2x}{dt^2} - 7(8x - 5\frac{dx}{dt})$$

$$\Rightarrow 25\frac{d^2x}{dt^2} - 75\frac{dx}{dt} + 50x = 0$$

This has the characteristic equation

$$r^{-}3r + 2 = 0 \Rightarrow r = 1, 2$$

Solution is

$$x = A \exp 2t + B \exp t.$$

Thus

$$\frac{dx}{dt} = 2A\exp 2t + B\exp t$$

so

$$y = -2A\exp(2t) + 3B\exp(t)$$

From the initial conditions, we have

$$x(0) = 2 = A + B$$

$$y(0) = 1 = -2A + 3B$$

$$\Rightarrow B = 1$$

$$A = 1$$

Hence

$$x = e^{2t} + e^t$$
$$y = -2e^{2t} + e^t$$

4. (i) From the definition of the L.T.

$$\mathcal{L}\{\exp-ktf(t)\} = \int_0^\infty e^{-st}e^{-kt}f(t)dt$$
$$= F(k+s)$$

(ii)

$$\mathcal{L}\{tf(t)\} = \int_0^\infty e^{-st} t f(t) dt$$

$$= -\frac{d}{ds} \int \exp{-st} f(t) dt$$

$$= \frac{dF(s)}{dx}$$

(iii)

$$\mathcal{L}\{1\} = \int_0^\infty e^{-st} dt$$
$$= \frac{1}{s}$$

(ii) and (iii) imply

$$\mathcal{L}{t} = \frac{1}{s^2}$$

$$\mathcal{L}{t^3} = \frac{d^2L(t)}{ds^2} = \frac{6}{s^4}$$

Thus using (i)

$$\mathcal{L}^{-1}\{(s+3)^{-4}\} = \exp{-3t\mathcal{L}^{-1}\{s^{-4}\}} = \exp{-3tt^3/6}$$

5. We have

$$u(x,t) = F(x)G(t)$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{d^2 F}{dx^2} G(t)$$

$$\frac{\partial u}{\partial t} = \frac{dG}{dt} F(x)$$

Hence

$$\begin{array}{rcl} \frac{d^2F}{\partial x^2}G(t) & = & \frac{1}{k}F\frac{dG}{dt} \\ \Rightarrow \frac{1}{F}\frac{d^2F}{dx^2} & = & \frac{1}{kG}\frac{dG}{dt} \end{array}$$

The LHS is independent of t and so the RHS must also be. The RHS is however independent of x and so is independent of both x and t and must therefore be a constant  $\alpha$ . The equations for F and G are thus

$$\frac{d^2F}{dx^2} = \alpha F \qquad \text{and} \qquad \frac{dG}{dt} = k\alpha G$$

From the boundary conditions we have u(0,t) = u(d,t) = 0 so F(0) = F(d) = 0. Now if

$$F(x) = \sin\left(\frac{2\pi nx}{d}\right)$$

Then

$$\frac{F(x)}{dx^2} = \frac{-4\pi^2 n^2}{d^2} \sin\left(\frac{2\pi nx}{d}\right) = \frac{-4\pi^2 n^2}{d^2} F(x)$$

So that the above equation is satisfied by putting

$$\alpha = \frac{-4\pi^2 n^2}{d^2}$$

The boundary conditions are satisfied as  $\sin(2n\pi) = 0$ 

6.

$$\xi = x - y, \quad \eta = y$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial}{\partial \xi}$$

$$\frac{\partial}{\partial y} = \frac{\partial}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial y} = -\frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta}$$

Hence

$$\begin{array}{rcl} \frac{\partial^2 u}{\partial x^2} & = & \frac{\partial^2 u}{\partial \xi^2} \\ \\ \frac{\partial^2 u}{\partial y^2} & = & -\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \xi \partial \eta} \\ \\ \frac{\partial^2 u}{\partial x \partial y} & = & \frac{\partial^2 u}{\partial \xi^2} - 2 \frac{\partial^2 u}{\partial \xi \partial \eta} - 2 \frac{\partial^2 u}{\partial \eta^2} \end{array}$$

Therefore

$$u_{xx} + 2u_{xy} + u_{yy} = \frac{\partial^2 u}{\partial \xi^2} + 2\left(-\frac{\partial^2 u}{\partial \xi^2 +} + \frac{\partial^2 u}{\partial \xi \partial \eta}\right) + \frac{\partial^2 u}{\partial \xi^2} - 2\frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2} = \frac{\partial^2 u}{\partial \eta^2}$$

If this equals 0, we get

$$\frac{\partial^2 u}{\partial \eta^2} = 0$$

Hence

$$u = f(\xi)\eta + g(\xi) = f(x - y)y + g(x - y)$$

7. The Cauchy-Riemann equations are

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$u(x,y) = x^3 - 3xy^2 - y^2 + x^2$$

$$\frac{\partial u}{\partial x} = 3x^2 - 3y^2 + 2x$$
$$\frac{\partial^2 u}{\partial x^2} = 6x + 2$$
$$\frac{\partial u}{\partial y} = -6xy - 2y$$
$$\frac{\partial^2 u}{\partial y^2} = -6x - 2$$

Laplace's equation in 2d is

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

which is therefore clearly satisfied.

From the first CR relation, we have

$$-\frac{\partial v}{\partial x} = -6xy - 2y$$
  
$$\Rightarrow v = 3x^2y + 2yx + f(y)$$

From the second CR relation, we have

$$\frac{\partial v}{\partial y} = 3x^2 + 2x + \frac{df}{dy} = \frac{\partial u}{\partial x} = 3x^2 - 3y^2 + 2x$$

$$\Rightarrow \frac{df}{dy} = -3y^2$$

$$\Rightarrow f(y) = -y^3 + C$$

$$\Rightarrow v = 3x^2y + 2xy - y^3 + C$$

10 .

$$f(x) = 1 - 2 \left| \sin \left( \frac{\pi x}{l} \right) \right| \qquad -l \le x \le 0$$

The period is l (see graph)



Also,  $b_n = 0$  since f(x) is even. From lectures, we have

$$a_0 = \frac{2}{l} \int_{-l/2}^{l/2} \left( 1 - 2 \left| \sin \left( \frac{\pi x}{l} \right) \right| \right) dx = 2 - \frac{8}{\pi}$$

$$a_n = \frac{2}{l} \int_{-l/2}^{l/2} \left( 1 - 2 \left| \sin \left( \frac{\pi x}{l} \right) \right| \right) \cos \left( \frac{2n\pi x}{l} \right) dx$$

$$= \frac{4}{l} \int_0^{l/2} \left( 1 - 2 \sin \left( \frac{\pi x}{l} \right) \right) \cos \left( \frac{2n\pi x}{l} \right)$$

$$= \frac{4}{l} \int_0^{l/2} \left\{ \cos \left( \frac{2n\pi x}{l} \right) - \sin \left( \frac{(2n+1)\pi x}{l} \right) + \sin \left( \frac{(2n-1)\pi x}{l} \right) \right\} dx$$

$$= \frac{4}{\pi} \left[ 0 + \frac{\cos\left(\frac{(2n+1)\pi}{2}\right) - 1}{2n+1} - \frac{\cos\left(\frac{(2n-1)\pi}{2}\right) - 1}{2n-1} \right]$$

$$= \frac{4}{\pi} \left[ \frac{-1}{2n+1} + \frac{1}{2n-1} \right]$$

$$= \frac{8}{\pi(2n+1)(2n-1)}$$

$$= \frac{8}{\pi(4n^2-1)}$$