MATH224 Summer Exam Solutions

1. Separate the variables:

$$\int \frac{dy}{y+5} = \int (1+3x^4)dx$$

$$\ln(y+5) = x + \frac{3x^5}{5} + C$$

$$\Rightarrow y+5 = D \exp(x+3x^5/5)$$

where $D = \exp(C)$ and C is a constant of integration.

2. Put $y = x^m$: then

$$2m(m-1) + m - 1 = 0$$

$$\Rightarrow (2m+1)(m-1) = 0$$

$$\Rightarrow m = -\frac{1}{2} m = 1$$

$$\Rightarrow y = Ax + \frac{B}{\sqrt{(x)}}$$

where A and B are constants.

3.

$$\begin{array}{rcl} \dot{x}+y&=&0\\ 4\dot{x}-\dot{y}+4x&=&0 \end{array}$$

Substituting the first of these equations into the second, we get

$$\ddot{x} + 4\dot{x} + 4x = 0$$

The auxiliary equation is

$$\lambda^2 + 4\lambda + 4 = 0$$

$$\Rightarrow (\lambda + 2)^2 = 0$$

Hence the general solution is

$$\begin{array}{rcl} x & = & Ate^{-2t} + Be^{-2t} \\ \Rightarrow \dot{x} & = & Ae^{-2t}(1-2t) - 2Be^{-2t} \\ \Rightarrow \dot{x} & = & Ae^{-2t}(1-2t) - 2Be^{-2t} \\ \Rightarrow y & = & Ae^{-2t}(2t-1) + 2Be^{-2t} \end{array}$$

From the initial conditions, we have

$$B = 1$$
$$A = 2$$

Hence

$$x = 2te^{-2t} + e^{-2t}$$

$$y = 2e^{-2t}(2t - 1) + 2e^{-2t}$$

4. (i) From the definition of the L.T.

$$\mathcal{L}{H(t-k)} = \int_0^\infty e^{-st} H(t-k) \cdot dt$$
$$= \int_k^\infty e^{-st} dt$$
$$= \left[\frac{e^{-st}}{-s} \right]_k^\infty$$
$$= \frac{e^{-ks}}{s}$$

(ii) The function f(t) can be written

$$f(t) = \frac{1}{a} (H(t - k) - H(t - (k + a)))$$

For which the L.T. is

$$F(s) = \frac{e^{-ks}}{as} - \frac{e^{-(k+a)s}}{as}$$

$$f(x) = a_0 + \sum_{n} a_n \cos(nx)$$

Since this is an even function, we have $b_n = 0$ Also, $a_0 = 0$ since this is the area under the graph from $-\pi$ to π .

We have

$$a_{n} = \frac{1}{\pi} \int_{\pi}^{\pi} f(x) \cos(nx) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos(nx) dx$$

$$= \frac{1}{\pi} \left[\int_{0}^{\pi/2} -\cos(nx) dx + \int_{\pi/2}^{\pi} \cos(nx) dx \right]$$

$$= \frac{1}{\pi} \left[\frac{-1}{n} [\sin(nx)]_{0}^{\pi/2} + \frac{1}{n} [\sin(nx)]_{\pi/2}^{\pi/2} \right]$$

$$= \frac{2}{n\pi} \left[-\sin\left(\frac{nx}{2}\right) \right]$$

$$= \frac{-2}{n\pi} \sin\left(\frac{nx}{2}\right)$$

6. Differentiating the given form for u we find

$$\frac{\partial^2 u}{\partial x^2} = \frac{d^2 F}{dx^2} \exp(-\lambda^2 kt)$$

$$\frac{1}{k} \frac{\partial u}{\partial t} = -\lambda^2 F(x)$$

Substituting these into the equation given yields

$$\frac{d^2F}{dx^2} = -\lambda^2 F$$

The solution to this is of the form

$$F(x) = A\cos(\lambda x) + B\sin(\lambda x)$$

to satisfy the boundary conditions A = 0 and $\sin(\lambda d) = 0$.

Therefore $\lambda d = n\pi$ where n is an integer. Hence $\lambda = n\pi/d$ giving the general solution

$$u(x) = \sum_{n=1} \sin(n\pi x/d) \exp(-n^2 \pi^2 kt/d^2)$$

7. Laplace's equation in 2d is

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

We have

$$\frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial x^2} = e^x \cos(y)$$

and

$$\frac{\partial u}{\partial y} = -e^x \cos(y)$$

Thus Laplace's equation is satisfied.

The Cauchy-Riemann equations are

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Thus we have

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = e^x \cos(y)$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = -\frac{\partial^2 u}{\partial y^2} = -e^x \sin(y)$$

From the first of these we get

$$v = e^x \sin(y) + g(x)$$

with g(x) an unknown function. From the second equation we get

$$\frac{dg}{dx} = 0$$

whence g = C, where C is a constant of integration.

$$\mathcal{L}(e^{at}) = \int_0^\infty e^{-st} e^{at} \cdot dt$$
$$= \left[\frac{-e^{-(s-a)t}}{s-a} \right]_0^\infty = \frac{1}{s-a} \quad \text{for } s > a$$

(ii) Here we need to perform an integration by parts of f'(t), which yields

$$\int_0^\infty f'(t)e^{-st}dt$$

$$= \left[fe^{-st}\right]_0^\infty + s\int_0^\infty f(t)e^{-st}dt$$

$$= -f(0) + s\mathcal{L}f(t)$$

(iii)

$$\mathcal{L}(f''(t)) = -f'(0) + s\mathcal{L}(f'(t))$$

$$= -f'(0) - sf(0) + s^2\mathcal{L}(f)$$

$$= -f(0) + s\mathcal{L}f(t)$$

Substituting the results of (ii) and (iii) above into the differential equation given, writing $Y(s) \equiv \mathcal{L}\{y(t)\}$, and inserting the initial conditions, one obtains

$$s^{2}Y(s) - s + 2 + 4(sY(s) - 1) + 3Y(s) = (s^{2} + 4s + 3)Y(s) = s + 2 + \frac{1}{s + 2}$$

Using partial fractions

$$Y(s) = \frac{1}{s+3} + \frac{1}{s+1} - \frac{1}{s+2}$$

 $\Rightarrow y(t) = \exp(-3t) + \exp(-t) - \exp(-2t)$

9. Firstly, we note that the function is even so $b_n = 0$

$$a_0 = \frac{1}{T} \int_{-T}^{T} |\sin\left(\frac{2\pi t}{T}\right)| dt$$
$$= \frac{4}{\pi}$$

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} |\sin(\pi x/T)| \cos(n2\pi x/T) dx$$

$$= \frac{4}{T} \int_{0}^{T/2} \sin(\pi x/T) \cos(n2\pi x/T) dx$$

$$= \frac{2}{T} \int_{0}^{T/2} \left\{ \sin((2n+1)\pi x/T) - \sin((2n-1)\pi x/T) \right\} dx$$

$$= \frac{2}{\pi} \left[-\frac{\cos((2n+1)\pi/2 - 1)}{2n+1} + \frac{\cos((2n-1)\pi/2 - 1)}{2n-1} \right]$$

$$= \frac{2}{\pi} \left(\frac{1}{2n+1} - \frac{1}{2n-1} \right)$$

$$= \frac{-4}{\pi(2n+1)(2n-1)}$$

If n = 2m - 1, the above is zero, so put n = 2m. Then

$$a_n = \frac{1}{\pi} \left[\frac{2}{2m+1} - \frac{2}{2m-1} \right]$$
$$= \frac{-4}{\pi (2m+1)(2m-1)}$$

Substituting into the definition of the Fourier series:

$$F(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\frac{2n\pi t}{T})$$

yields the required result

$$f(t) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n+1)(2n-1)} \cos\left(\frac{n\pi t}{T}\right) .$$

Now let a trial particular integral be

$$x = b_0 + \sum b_m \cos\left(\frac{n\pi t}{T}\right)$$

Then $b_0 = 2/pi$. Differentiating x twice and substituting into the equation, we get

$$\left[-\left(\frac{n\pi}{T}\right)^2 + 1 \right] b_m = \frac{-4}{\pi(2m+1)(2m-1)}$$

which specifies b_m .

10. The characteristics are given by

$$\frac{dx}{dt} = 1 + y \qquad (1)$$

$$\frac{dy}{dt} = y \qquad (2)$$

$$\frac{du}{dt} = u + y \qquad (3)$$

The boundary conditions are x = 0, y = s, u = s(1 - s). s is a parameter which gives a position on the boundary and t is a parameter which gives a parameter on the characteristic.

From (2) we have

$$y = s \exp(t)$$

From (1) and (2)

$$d(x-y)/dt = 1 \Rightarrow x - y = t - s$$

So

$$x = s \exp(t) + t + s$$

From (3)

$$\frac{du}{dt} = u + s \exp(t)$$

Using an integrating factor, we get

$$\frac{d(u\exp(-t))}{dt} = s$$

Hence

$$u\exp(-t) = st + C = st + s(1-s) \Rightarrow u = s\exp(t+1-s) \Rightarrow u = y(1+x-y)$$

11.

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta}$$
$$\frac{\partial}{\partial y} = \frac{\partial}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial y} = \frac{\partial}{\partial \xi} - 2\frac{\partial}{\partial \eta}$$

Hence

$$\begin{split} \frac{\partial^2}{\partial x^2} &= \frac{\partial^2}{\partial \xi^2} + 2 \frac{\partial^2}{\partial \xi \partial \eta} + \frac{\partial^2}{\partial \eta^2} \\ \frac{\partial^2}{\partial y^2} &= \frac{\partial^2}{\partial \xi^2} - 4 \frac{\partial^2}{\partial \xi \partial \eta} + 4 \frac{\partial^2}{\partial \eta^2} \\ \frac{\partial^2}{\partial x \partial y} &= \frac{\partial^2}{\partial \xi^2} - \frac{\partial^2}{\partial \xi \partial \eta} - 2 \frac{\partial^2}{\partial \eta^2} \end{split}$$

Therefore

$$4u_{xx} + 4u_{xy} + u_{yy} = 9u_{\xi\xi} + 0 + 0$$

and the equation is therefore parabolic.

Now solving for x and y, we have

$$3x = 2\xi + \eta \qquad \qquad 3y = \xi - \eta$$

Now

$$9(x^{2} - xy - 2y^{2}) = 4\xi^{2} + 4\xi\eta + \eta^{2} - (2\xi^{2} - \xi\eta - \eta^{2}) - 2(\xi^{2} - 2\xi\eta + \eta^{2})$$
$$= 0 + 9\xi\eta + 0$$

so the equation is

$$9u_{\xi\xi} = 9\xi\eta$$

$$\Rightarrow u_{\xi} = \frac{\xi^{2}\eta}{2} + f(\eta)$$

$$\Rightarrow u = \frac{1}{6}\frac{\xi^{3}\eta}{2} + \xi f(\eta) + g(\eta)$$

$$= \frac{1}{6}\left((x+y)^{2}(x-2y)\right) + (x+y)f(x-2y) + g(x-2y)$$

12. (i)

$$\mathcal{L}(H(t-a)f(t-a)) = \int_0^\infty e^{-st} H(t-a)f(t-a)dt$$
$$= \int_a^\infty e^{-st} f(t-a)dt$$

Now let $\tau = t - a$ then

$$\mathcal{L}(H(t-a)f(t-a)) = \int_0^\infty e^{-s(\tau+a)} f(\tau)d\tau$$
$$= e^{-as} \int_0^\infty e^{-s\tau} f(\tau)d\tau$$
$$= e^{-as} F(s)$$

(ii) Taking the L.T of the equation we get

$$\tilde{u}'' - 2s\tilde{u}' + s^2\tilde{u} = 0$$

(iii) The boundary conditions are

$$\tilde{u}(x,s) = \int_0^\infty e^{-st} u(x,t) dt$$

Thus

$$\tilde{u}(0,s) = 0$$

$$\tilde{u}(1,s) = \int_0^\infty t e^{-st} dt$$

$$= \frac{-1}{s} \left[t e^{-st} \right]_0^\infty + \frac{1}{s} \int_0^\infty e^{-st} dt$$

$$= 0 - \frac{1}{s^2} \left[e^{-st} \right]_0^\infty$$

$$= \frac{1}{s^2}$$

(iv)

$$\tilde{u}'' - 2s\tilde{u}' + s^2\tilde{u} = 0$$

Auxiliary equation is

$$m^2 - 2sm + s^2 = 0$$

Double root, solution:

$$\tilde{u} = (Ax + B)e^{sx}$$

Boundary conditions $x=0 \Rightarrow B=0; x=1 \Rightarrow A=e^s/s^2$. Hence

$$\tilde{u} - \frac{e^s x}{s^2} e^{sx} = \frac{x e^{s(x+1)}}{s^2}$$

Therefore

$$u(x,t) = x(t+x+1) H(t-(x+1))$$