
Solutions to MATH 201 JAN 2006
The solutions are all similar to questions set for homework except where marked bw for

bookwork.

SECTION A
1.

dy

dx
=

x2 − x− 1
x

y2.

This is separable. Separating the variables gives∫
dy

y2
=

∫
(x− 1− 1/x)dx = −1

y
= x2/2− x− ln |x|+ C.

So that
y = − 1

x2/2− x− ln |x|+ C

The second equation is linear

dy

dx
+

2
1 + x

y = x− 1 has integrating factor exp
(∫

2dx

1 + x

)
= exp(2 ln |1 + x|) = (1 + x)2.

Multiplying through by the integrating factor gives

(1 + x)2
dy

dx
+ 2(1 + x)y =

d

dx

(
(1 + x)2y

)
= x3 + x2 − x− 1

Integrating this equation gives

(1 + x)2y =
x3

3
+

x4

4
− x− x2

2
+ C

2. The solution y = emx will satisfy the homogeneous equation if m2 + 13m + 40 = 0. This
has roots m = −5 and m = −8 so the Complementary Function is Ae−5x + Be−8x.

To find the particular integral we try y = αx2 + βx + γ. We find

2α + 13(2αx + β) + 40(αx2 + βx + γ) = 40x2 + 146x + 241

This is satisfied if α = 1, 26α+40β = 146, so that β = 3 and 2α+13β +40γ = 241, so that γ = 5.
The general solution is then

y = Ae−5x + Be−8x + x2 + 3x + 5

From the initial conditions we get

y(0) = A + B + 5 = 10, y′(0) = −31 = −5A− 8B + 3

Therefore A = 2 and B = 3.
The solution is therefore y = 2e−5x + 3e−8x + x2 + 3x + 5
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3. Substituting x in to the equation gives −4x + 4x = 0
Try y = xu. We get

(1 + x2)
[
xu′′ + 2u′

]
− 4x

[
xu′ + u

]
+ 4xu = 0

This simplifies to

u′′ =
(
−2
x

+
4x

1 + x2

)
u′ so that

∫
d(u′)
u′

= −2
∫

dx

x
+

∫
4x dx

x2 + 1

ln(u′) = −2 ln x + 2 ln(x2 + 1) or u′ =
(1 + x2)2

x2
=

1
x2

+ 2 + x2

Therefore
u = − 1

x
+ 2x + x3/3

The second solution is therefore y = x4

3 + 2x2 − 1.

4. For λ = ω2, The general solution is y = A cos(ωx) + B sin(ωx). y(0) = A = 0 and
y′(π) = Bω cos(ωπ). B = 0 unless cos(ωπ) = 0 that is if ω = (n + 1/2). The eigenvalues are
therefore λ = (n + 1/2)2 and the eigenfunctions sin((n + 1/2)x).∫ π

0

φn(x)φm(x)dx =
∫ π

0

sin[(n + 1/2)x] sin[(m + 1/2)x]dx

=
1
2

∫ π

0

[
cos[(n−m)x]− cos[(n + m + 1)x]

]
dx =

1
2

[
sin[(n−m)x]

n−m
− sin[(n + m + 1)x]

n + m + 1

]π

0

= 0

5.
d2y

dx2
= 2a2 + 6a3x + 12a4x

2 + 20a5x
3 + ... + (n + 2)(n + 1)an+2x

n + ...

2xy = 2xa0 + 2a1x
2 + 2a2x

3 + 2a3x
4 + .... + 2an−1x

n + 2anxn+1...

We get a recurrence relation between an+2 and an−1 by equating coefficients of xn. We find that

an+2

an−1
=

−2
(n + 2)(n + 1)

.

We see that a0 and a1 are equal to A and B, that a2 = 0, a3 = −a0/3, a4 = −2a1/12, a5 = 0.
Thus

f(x) = 1− 2
6
x3 +

2
6.5

2
6
x6 + ...

and
g(x) = 1− 2

4.3
x3 +

2
7.6

2
4.3

x6 + ...

The ratio between successive terms in each of the two series is −2x3/((n + 3)(n + 2)). The size
of this ratio tends to zero for all finite values of x as n tends to ∞. The two series will therefore
converge for all finite values of x.
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6. Any point where P (x) = 0 and so d2y/dx2 is not defined is a singular point of the differential
equation. All other points are ordinary points. If x0 is a singular point and

lim
x→x0

(x− x0)
Q(x)
P (x)

exists and lim
x→x0

(x− x0)2
R(x)
P (x)

exists

the singular point is a regular singular point. If either limit does not exist, the point x = x0 is an
irregular singular point.

There are 3 singular points, x = 0, x = 1 and x = 2.
For x = 0 we have (x + 4)/(x2 − 3x + 2) is finite, but 5/[x(x2 − 3x + 2)] is not as x → 0, so

x = 0 is an irregular singular point.
For x = 1, (x + 4)/[x(x− 2)] and 5(x− 1)/[x3(x− 2)] are both finite as x → 1, so this point

is a regular singular point
For x = 2, we have (x + 4)/[x(x− 1) and 5(x− 2)/[x3(x− 1)] are both finite as x→ 2 so this

point is also a regular singular point.

7. The eigenvalues of A satisfy (2 − λ)(6 − λ) + 3 = 0 so the eigenvalues are λ = 3 and
λ = 5. The eigenvectors are (3,−1)T and (1,−1)T . The complementary function is therefore
A1(3,−1)T e3t + A2(1,−1)T e5t, where A1 and A2 are constants.

The particular integral will be we2t. Substituting into the differential equation and dividing
through by e2t gives:

2w1 = 2w1 − 3w2 − 6 and 2w2 = w1 + 6w2 − 9.

The solution is w1 = 17 and w2 = −2.
The complete solution is then

x = A1

(
3
−1

)
e3t + A2

(
1
−1

)
e5t +

(
17
−2

)
e2t,

where A1 and A2 are constants

SECTION B

8. y = emx will be a solution if m2 + 4m + λ = 0, that is for m = −2±
√

4− λ.
If λ < 4, both values of m will be real and distinct. Let λ = 4 − p2, the general solution is

then y = Ae(p−2)x + Be−(p+2)x. The boundary conditions give y(0) = 0 = A + B and y′(1) = 0 =
(p− 2)Aep−2 − (p + 2)Be−p−2. The only solution is A = B = 0.

For λ = 0 the general solution is y = (A + Bx)e−2x. The boundary conditions give y(0) =
0 = A and y′(1) = 0 = (B − 2A− 2B)e−2 and so A = B = 0.

For λ = 4 + ω2, we have y = e−2x
(
A cos(ωx) + B sin(ωx)

)
.

The boundary conditions give y(0) = 0 = A and then y′(1) = 0 = Be−2(−2 sinω + ω cos ω).
Thus B = 0 unless −2 sin(ω) + ω cos ω = 0. This will be so if ω = 2 tanω. eigenfunctions
e−2x sin(ωnx). To convert to the Sturm Liouville form, we have to multiply through by a function
P (x) which changes the derivative part to the form

d

dx

(
P (x)

dy

dx

)
= P (x)

d2y

dx2
+ P ′(x)

dy

dx
.
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Such a function will satisfy the differential equation P ′(x) = 4P (x). This function is e4x. The
Sturm Liouville form is therefore

d

dx

(
e4x dy

dx

)
+ λe4xy = 0.

If φn(x) is the n’th eigenfunction, with eigenvalue λn,

d

dx

(
e4x dφn

dx

)
= −λne4xφn.

Multiply this by a different eigenfunction φm(x) and integrate from 0 to 1∫ 1

0

φm
d

dx

(
e4x dφn

dx

)
dx = −λn

∫ 1

0

e4xφnφmdx =
[
φm(x)e4x d

dx
φn(x)

]1

0

−
∫ 1

0

e4x dφm

dx
.
dφn

dx
.

The integrated term is zero because at x = 0, φm(0) = 0 and at x = 1, φ′n(1) = 0. If we now write
the equation for φm(x), multiply by φn(x) and integrate from 0 to 1, we see that if we integrate by
parts, the integrated term vanishes leaving us with the same integral of φ′n and φ′m. We see then
that

−λn

∫ 1

0

e4xφnφmdx = −λm

∫ 1

0

e4xφnφmdx.

For this to be true with λn 6= λm,
∫ 1

0
e4xφnφmdx = 0.

9. Substituting y =
∑∞

n=0 anxn into the differential equation gives

λy = λa0 +λa1x +λa2x
2 +λa3x

3 +λa4x
4 +... +λanxn +...

d2y
dx2 = 2a2 +2.3a3x +3.4a4x

2 +4.5a5x
3 +5.6a6x

4 +... +(n + 2)(n + 1)xn +...
−x2 d2y

dx2 = −2a2x
2 −2.3a3x

3 −3.4a4x
4 −... −n(n− 1)an+2x

n −...

The coefficient of xn in the differential equation is

(n + 2)(n + 1)an+2 − n(n− 1)an + λan = 0

This gives the recurrence relation

an+2

an
=

n(n− 1)− λ

(n + 2)(n + 1)
.

The solution is

a0

{
1 +

a2

a0
x2 +

a2

a0

a4

a2
x4 + ...

}
+ a1

{
x +

a3

a1
x3 +

a3

a1

a5

a3
x5 + ...

}

= a0

{
1 +

−λ

1.2
x2 +

−λ

1.2
2− λ

3.4
x4 + ...

}
+ a1

{
x +

−λ

2.3
x3 +

−λ

2.3
3.2− λ

4.5
x5 + ...

}
Clearly if λ = m(m− 1) for some integer m, am+2/am=0, and this series terminates. If m is

odd, it is the series of odd powers which terminates, while if m is even, the series of even powers
terminates.

If m = 2, λ = 2, a4 = 0, a2/a0 = −1, so Q2(x) = 1− x2.
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If m = 3, λ = 6, a5 = 0, a3/a1 = −1, so Q3(x) = x− x3.
If m = 4, λ = 12, a6 = 0, so Q4(x) = 1− 6x2 + 5x4.
If m = 5, λ = 20, a7 = 0, so Q5(x) = x− 10x3/3 + 7x5/3.
The integration is from −1 to 1. This means that the integral of an odd function of x is zero.

Therefore the integral of an odd order Q with an even order Q is zero. We thus only have to
evaluate the integral with Q2 and Q4 and the integral withQ3 and Q5. These are∫ 1

−1

(1− x2)(1− 6x2 + 5x4)
1− x2

dx =
[
x− 2x3 + x5

]1
−1

= 0

and ∫ 1

−1

(x− x3)(x− 10x3/3 + 7x5/3)
1− x2

dx =
[
x3

3
− 2x5

3
+ x7/3

]1

−1

= 0.

10. Substituting into the differential equation:
−y = −a0x

c − ... −anxc+n − ...
3 dy

dx = 3ca0x
c−1 +3(c + 1)a1x

c + ... +3(c + n)an+1x
c+n + ...

−x dy
dx = ca0x

c − ... −(c + n)anxc+n − ...
4x d2y

dx2 = 4c(c− 1)a0x
c−1 +4(c + 1)ca1x

c + ... +4(c + n + 1)(c + n)an+1x
c+n + ...

The smallest power of x in this is xc−1. Its coefficient is (4c(c− 1) + 3c)a0. a0 is not zero by
hypothesis and so c = 0 or c = 1/4.

We get the recurrence relation by looking at the coefficient of xn+c. This gives us

an+1

an
=

c + n + 1
(c + n + 1)(4c + 4n + 3)

=
1

4c + 4n + 3

For c = 0 if we take a0 = 1,

y = 1 +
1
3
x +

1
3

1
7
x2 + ...

and for c = 1/4 we have

y = x
1
4

{
1 +

1
4
x +

1
4

1
8
x2 + ...

}
The ratio between successive terms in either of the series is x/(4c+4n+3). This tends to zero

as n tends to infinity for all finite values of x. The series therefore converges for all finite values of
x.

To convert to the Sturm Liouville form, we have to multiply through by a function P (x) which
changes the derivative part to the form

d

dx

(
P (x)

dy

dx

)
= P (x)

d2y

dx2
+ P ′(x)

dy

dx
.

Such a function will satisfy the differential equation P ′(x) = [(3− x)/4x]P (x).
Thus lnP = (3 lnx− x)/4 so that P = x3/4e−x/4. The Sturm Liouville form is then

d

dx

(
x3/4e−x/4 dy

dx

}
− x−1/4

4
e−x/4y = 0.
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11. A(1, 2,−1)T = (1, 2,−1)T , so (1, 2,−1)T is an eigenvector with eigenvalue λ = 1.
Alternatively, we can find the other eigenvalue from the determinant

det

∣∣∣∣∣ 7− λ 2 10
−8 −3− λ −16
5 1 4− λ

∣∣∣∣∣ = 0 = −λ3 + 8λ2 + 17λ + 10 = −(λ− 1)(λ− 2)(λ− 5).

The roots are λ = 1, λ = 2 and λ = 5.
The third eigenvector can be found by multiplying the first column of A− λ2I by the matrix

A− λ1I. That is

e3 =

 6 2 10
−8 −4 −16
1 1 3

  5
−8
1

 =

 24
−24
0

 .

We can take a factor of 24 out so that e3 = (1,−1, 0)T . Its eigenvalue is 5.
The second eigenvector can be found by multiplying the first column of A−λ3I by the matrix

A− λ1I. That is

e3 =

 6 2 10
−8 −4 −16
1 1 3

  2
−8
1

 =

 6
0
−3

 .

We can take a factor of 3 out so that e3 = (2, 0,−1)T . Its eigenvalue is 2.
The second eigenvector can be found by taking the cofactors of the elements of the first row

of A− 2I. This gives a multiple of (2, 0,−1)T .
The third eigenvector can be found by taking the cofactors of the elements of the first row of

A− 5I. This gives a multiple of (1,−1, 0)T .
The matrix P is the matrix whose columns are the eigenvectors, so

P =

 1 2 1
2 0 −1
−1 −1 0

 and D =

 1 0 0
0 2 0
0 0 5


Write x = Py and then ẋ = P ẏ = APy + f(t).

Then P−1P ẏ = P−1APy + P−1f(t)
or ẏ = Dy + c(t), where c(t) = P−1f(t). The inverse matrix P−1 is 1 1 2

−1 −1 −3
2 1 4


Therefore c1 = f1 + f2 + 2f3, c2 = −f1 − f2 − 3f3/ and c3 = +2f1 + f2 + 4f3.

6



12.
dx
dt

=
(

5
15

)
e5t =

(
2 1
−9 8

) (
1
3

)
e5t.

We find the eigenvalues by solving

det
∣∣∣∣ 2− λ 1
−9 8− λ

∣∣∣∣ = 0

This has a double root λ = 5
We look for a second solution (1, 3)T te5t + we5t. We get(

5t + 1 + 5w1

15t + 3 + 5w2

)
e5t =

(
5t + 2w1 + w2

15t− 9w1 + 8w2

)
e5t.

Therefore
3w1 − w2 = −1 and 9w1 − 3w2 = −3.

We can take w2 = 1 and w1 = 0. The second solution is then y = (1, 3)T te5t + (0, 1)T e5t The
general solution is then y = A(1, 3)T e5t + B[(1, 3)T te5t + (0, 1)T e5t]

We take P to have the first column (1, 3)T and second column (0, 1)T Thus

P =
(

1 0
3 1

)
and P−1 =

(
1 0
−3 1

)
.

Writing x = Py

dy
dt

= P−1 dx
dt

=
(

1 0
−3 1

) (
2 1
−9 8

) (
1 0
3 1

)
y +

(
1 0
−3 1

)
f =

(
5 1
0 5

)
y +

(
1 0
−3 1

)
f

The equations are now decoupled. The equation for y2 does not involve y1.
We have ẏ1 = 5y1 + y2 + f1 and ẏ2 = 5y2 − 3f1 + f2

We have to solve ẏ2 = 5y2 + e5t. This is a first order linear equation whose integrating factor
is e−5t. The solution is y2 = (A + t)e5t.

The equation for y1 is ẏ1 = 5y1 + (A + t)e5t. This is also a first order linear equation with
integrating factor e−5t. The solution is y1 = (B + At + t2/2)e5t. Then

x1 = y1 = (B + At + t2/2)e5t, and x2 = 3y1 + y2 = (A + 3B + (3A + 1)t + 3t2/2)e5t.

7


