ould answer the S. Section A carrie		${ m HREE}$ questio

SECTION A

1. The Stefan-Boltzmann constant is given by

$$\sigma = \frac{2\pi^5 k^4}{15c^2 h^3} \approx 5.67 \times 10^{-8} \text{ W m}^{-2} \text{K}^{-4}.$$

Find σ to five significant figures given that $k=1.38066\times 10^{-23}$ J K⁻¹, $c=2.99792\times 10^8$ m s⁻¹ and $h=6.62608\times 10^{-34}$ J s.

[5 marks]

2. Simplify

$$\frac{(a^3b)^2(b^2c^3)^4}{(c^3a^2)^3}.$$

[4 marks]

- 3. Find 2 values of θ between 0 and 2π which satisfy $\sin \theta = 0.76543$. Give your answers in radians to 3 significant figures. [4 marks]
 - 4. Write down the common difference for the arithmetic series

$$\frac{41}{3} + \frac{39}{3} + \frac{37}{3} + \dots + \frac{1}{3}.$$

How many terms are there in this series?

Find the sum of the series.

[5 marks]

5. Evaluate the sum of the infinite geometric series

$$\frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \cdots$$

[4 marks]

6. Solve the linear equations

$$5x + 4y = 23,$$
 $4x - 5y = 2.$

[4 marks]

7. By completing the square, find the two roots of the equation

$$x^2 - 8x - 384 = 0.$$

[5 marks]

8. Find the first and second derivatives with respect to x of $\sin(x^2 + 1)$.

[5 marks]

9. By using the substitution $u = x^2 + 9$, evaluate the integral

$$\int_0^4 x(x^2+9)^{1/2} \mathrm{d}x.$$

[5 marks]

10. Find the integral with respect to x of

$$\frac{6}{2x-3}$$
.

[3 marks]

11. Find all the second order partial derivatives of $f(x,y) = (x^2 - y^2)^3$.

[5 marks]

12. Given the complex numbers $z_1 = 4 - 3j$ and $z_2 = 4 + 4j$, find (i) $|z_1|$, (ii) $z_1 + 2z_2$, (iii) $1/z_1$ and (iv) z_1z_2 . [6 marks]

SECTION B

13 (a). The series S(x) is given by

$$S(x) = \sum_{r=0}^{5} \frac{5!}{r!(5-r)!} x^{r}.$$

Expand this series and simplify your result.

[7 marks]

(b). Given

$$\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right), \quad \sinh x = \frac{1}{2} \left(e^x - e^{-x} \right),$$

show that

 $\cosh^2 x - \sinh^2 x = 1$ and $2 \sinh x \cosh x = \sinh 2x$.

[8 marks]

14 (a). Evaluate the integral

$$\int_0^{\frac{\pi}{2}} \theta \sin 2\theta \ d\theta.$$

[9 marks]

(b). Given that

$$\frac{(2x^2+10x+14)}{(x+1)(x+2)(x+3)} \equiv \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{x+3},$$

find A, B and C.

[6 marks]

15. Find and classify the stationary points of

$$y = f(x) = x^3 - 6x^2 + 9x - 2,$$

Find the point of inflection and show that it lies on the x-axis.

Hence write down one factor of f(x).

Find the quadratic factor of f(x).

Hence, find the 2 non-integer roots of f(x), giving your answer to one decimal place.

Sketch f(x). [15 marks]

16 (a). Use de Moivre's theorem to show that

$$\sin 3\theta = 3\cos^2\theta\sin\theta - \sin^3\theta.$$

Obtain a similar expression for $\cos 3\theta$. Deduce that

$$\cot 3\theta = \frac{1 - 3t^2}{t(3 - t^2)}.$$

where $t = \tan \theta$.

[7 marks]

(b). Simplify $e^{j\pi}$. Find the five roots of $z^5 = -1$.

Hence, or otherwise, show that

$$z^{5} + 1 = (z+1)(z^{2} - 2\cos(\pi/5)z + 1)(z^{2} - 2\cos(3\pi/5)z + 1).$$

[8 marks]

17. Sketch the triangle, \mathcal{R} , with sides given by x = 1, y = 0 and y = x.

A non-uniform lamina with shape $\mathcal R$ has a mass density of $\rho=xy$ kg m⁻².

Show that its mass is 0.125 kg.

Find the coordinates of its centre of mass.

[15 marks]