MATH185 JAN 2006

Instructions to candidates

Answer all of section A and THREE questions from section B. Section A carries 55% of the available marks.

SECTION A

1. Simplify

$$\frac{(xy^3)^{\frac{1}{3}}(x^{\frac{1}{4}}z^3)^4}{xy^3z^2}$$

[4 marks]

2. Sketch the graph of $y = 2\sin 2x$ for $-\pi \le x \le \pi$.

[3 marks]

3. The sum of the arithmetic series

$$S_n = a + (a+d) + (a+2d) + (a+3d) + \dots + (a+(n-1)d)$$

is given by

$$S_n = \frac{n}{2}(2a + (n-1)d).$$

Use this result to find the sum of the first 50 even numbers. [4 marks]

4. The sum of the geometric series

$$S_n = a + ar + ar^2 + ar^3 + \dots + ar^{(n-1)}$$

is given by

$$S_n = \frac{a(1-r^n)}{1-r}$$

Use this result to find the sum of the finite series

$$1 + 0.8 + 0.64 + 0.512$$
.

Verify your result by explicitly summing the series. Find also the sum of the infinite series

$$1 + 0.8 + 0.64 + 0.512 + \cdots$$

[6 marks]

5. Solve the pair of simultaneous equations

$$x + 2y = 3$$
, $3x + 4y = -1$.

[4 marks]

Solve the quadratic equation

$$x^2 + 11x + 24 = 0.$$

[3 marks]

Differentiate the following functions:

$$(a)$$
 $x \tan x$

(a)
$$x \tan x$$
 (b) $\frac{\sin x}{x+1}$ (c) e^{x^2}

$$(c)$$
 e^{x^2}

[6 marks]

8. Calculate the integral $\int_0^{\frac{\pi}{2}} \cos x \, dx$.

Sketch a graph of the function $y = \cos x$ and indicate on the sketch the feature represented by the integral calculated above.

[4 marks]

Use integration by parts to evaluate the integral

$$\int_0^\pi x \sin x \, dx$$

[5 marks]

Consider the function 10.

$$f(x,y) = x\sin y + y\cos x.$$

Find the partial derivatives f_x , f_y , f_{xx} , f_{yy} and f_{xy} .

[5 marks]

11. Let $z_1 = 3 + 5i$ and $z_2 = 1 + i$.

Express z_1z_2 and $\frac{z_1}{z_2}$ in the form a+ib where a and b are real.

Find $|z_1 z_2|$ and $|\frac{z_1}{z_2}|$

[6 marks]

12. The hyperbolic functions are defined by

$$\cosh x = \frac{1}{2}(e^x + e^{-x})$$
 and $\sinh x = \frac{1}{2}(e^x - e^{-x}).$

Sketch the graphs of $y = \cosh x$ and $y = \sinh x$.

From the definitions, prove that

$$\cosh^2 x - \sinh^2 x = 1$$
 and $\cosh^2 x + \sinh^2 x = \cosh 2x$

[5 marks]

SECTION B

13. Consider the function

$$f(x) = \frac{x+A}{x+1}, \quad x \neq -1.$$

where A is a constant, $(A \neq 1)$. Find the corresponding inverse function $f^{-1}(x)$.

[3 marks]

For the case A=2, sketch y=f(x) and $y=f^{-1}(x)$ on the same set of axes. Show that the the curves cross each other and also the line y=x when

$$x = \pm \sqrt{2}$$
.

[12 marks]

14. (a) Using the substitution $u = \tan x$, or otherwise, evaluate the integral

$$\int \sec^2 x \sqrt{\tan x} \ dx$$

[4 marks]

(b) Find constants A, B, such that

$$\frac{x-2}{(x+1)(x+2)} \equiv \frac{A}{x+1} + \frac{B}{x+2}.$$

Hence or otherwise show that

$$\int_0^2 \frac{x-2}{(x+1)(x+2)} \, dx = 4 \ln 2 - 3 \ln 3.$$

[11 marks]

15.	Verify that $x = 2$ is a solution of the equation $x^3 - 9x^2 + 24x - 20 = 0$,
and her	ace find the other solution or solutions

[3 marks]

Find and classify the stationary points of the function

$$f(x) = x^3 - 9x^2 + 24x - 20.$$

[7 marks]

Find the inflection point of f(x).

[2 marks]

Sketch the graph y = f(x).

[3 marks]

16. (a) De Moivre's theorem states that

$$(\cos x + i\sin x)^n = \cos nx + i\sin nx$$
, for $n = 0, \pm 1, \pm 2, \cdots$

Using the theorem, prove that if θ is real then

$$\sin 5\theta = 16\sin^5\theta - 20\sin^3\theta + 5\sin\theta.$$

[8 marks]

(b) Find all complex numbers z such that $z^3=1$, writing your answers both in modulus-argument form and in the form a+ib. Indicate their positions in an Argand diagram.

[7 marks]

17. Sketch the region \mathcal{R} bounded by the x-axis, the curve y=1/x, and the lines x=1 and x=2.

A lamina with shape \mathcal{R} has a mass density given by

$$\rho = mx$$

where m is a constant. The mass M of the lamina is given by

$$M = \int_{\mathcal{R}} \rho(x, y) dA = m \int_{1}^{2} \int_{0}^{1/x} x dy dx.$$

Find M in terms of m.

[5 marks]

The centre of mass of the lamina is given by (X, Y) where

$$X = \frac{1}{M} \int_{\mathcal{R}} x \rho(x, y) dA$$
 and $Y = \frac{1}{M} \int_{\mathcal{R}} y \rho(x, y) dA$.

Find X and Y.

[10 marks]