MATH185 Jan 2005

Instructions to candidates

Answer all of section A and THREE questions from section B. Section A carries 55% of the available marks.

SECTION A

1. Simplify

$$\frac{(x^2y^3)^{\frac{1}{3}}(x^{\frac{1}{4}}z^2)^4}{xy^2z^3}$$

[4 marks]

2. Sketch the graph of $y = \sin 2x$ for $-\pi \le x \le \pi$.

[3 marks]

3. The sum of the arithmetic series

$$S_n = a + (a+d) + (a+2d) + (a+3d) + \dots + (a+(n-1)d)$$

is given by

$$S_n = \frac{n}{2}(2a + (n-1)d).$$

Use this result to find the sum of the first 100 even numbers. [4 marks]

4. The sum of the geometric series

$$S_n = a + ar + ar^2 + ar^3 + \dots + ar^{(n-1)}$$

is given by

$$S_n = \frac{a(1-r^n)}{1-r}$$

Use this result to find the sum of the finite series

$$1 - 0.3 + 0.09$$
.

Verify your result by explicitly summing the series. Find also the sum of the infinite series

$$1 - 0.3 + 0.09 - 0.027 + \cdots$$

(Give your answer in the form of a fraction).

[6 marks]

5. Solve the pair of simultaneous equations

$$2x + 3y = 4$$
, $3x + 5y = 8$.

Check your answer by substituting back into the original equations. [5 marks]

Solve the quadratic equation

$$2x^2 + x - 3 = 0.$$

[3 marks]

- Differentiate the following functions:

 - $(a) \quad e^{4x} \qquad (b) \quad \sin(x^2)$
 - (c) $x\cos x$.

[6 marks]

8. Calculate the integral $\int_2^3 \frac{1}{x} dx$, evaluating the result to three decimal places.

Sketch a graph of the function $y = \frac{1}{x}$ and indicate on the sketch the feature represented by the integral calculated above.

[5 marks]

Use integration by parts to evaluate the integral

$$\int_0^\infty x e^{-x} \, dx$$

[4 marks]

Consider the function

$$f(x,y) = \frac{1}{x+2y}.$$

Find the partial derivatives f_x , f_y , f_{xx} , f_{yy} and f_{xy} .

[5 marks]

11. Let $z_1 = 1 + 2i$ and $z_2 = 2 - i$.

Express z_1z_2 and $\frac{z_1}{z_2}$ in the form a+ib where a and b are real. Find $|z_1 z_2|$ and $|\frac{z_1}{z_2}|$

[6 marks]

12. The hyperbolic functions are defined by

$$\cosh x = \frac{1}{2}(e^x + e^{-x})$$
 and $\sinh x = \frac{1}{2}(e^x - e^{-x}).$

From the definitions, prove that

$$\frac{d}{dx}\sinh x = \cosh x$$
 and $\frac{d}{dx}\cosh x = \sinh x$.

[4 marks]

SECTION B

13. Consider the function

$$f(x) = \frac{Ax+1}{x-1}, \quad x \neq 1.$$

where A is a constant. Find the corresponding inverse function $f^{-1}(x)$.

[4 marks]

(i) For the case A=2, sketch y=f(x) and $y=f^{-1}(x)$ on the same set of axes. Show that the the curves cross each other and also the line y=x when

$$x = \frac{3 \pm \sqrt{13}}{2}.$$

[9 marks]

(ii) Find a different value of A such that f(x) and $f^{-1}(x)$ are identical.

[2 marks]

14. (a) Using the substitution $u = x^2 + x + 3$, or otherwise, evaluate the integral

$$\int (2x+1)\sqrt{x^2+x+3}\ dx$$

[6 marks]

(b) Find constants A, B, such that

$$\frac{x-3}{(x-1)(x-2)} \equiv \frac{A}{x-1} + \frac{B}{x-2}.$$

Hence or otherwise calculate

$$\int_{3}^{4} \frac{x-3}{(x-1)(x-2)} \, dx$$

[9 marks]

15.	Verify th	at $x = 1$	is a	solution	of the	equation	x^3 -	x^2 -	5x +	5 =	0,
and her	nce find tl	ne other t	wo so	olutions.							

[2 marks]

Find and classify the stationary points of the function

$$f(x) = x^3 - x^2 - 5x + 5.$$

[8 marks]

Find the inflection point of f(x).

[2 marks]

Sketch the graph y = f(x).

[3 marks]

16. (a) De Moivre's theorem states that

$$(\cos x + i\sin x)^n = \cos nx + i\sin nx$$
, for $n = 0, \pm 1, \pm 2, \cdots$

Using the theorem, prove that if θ is real then

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
 and $\sin 2\theta = 2\sin \theta \cos \theta$.

[5 marks]

(b) Find all complex numbers z such that $z^3=8$, writing your answers both in modulus-argument form and in the form a+ib. Indicate their positions in an Argand diagram.

[10 marks]

17. Sketch the region \mathcal{R} bounded by the x-axis, the curve $y=x^2$, and the line x=1.

A lamina with shape \mathcal{R} has a mass density given by

$$\rho = mx$$

where m is a constant. The mass M of the lamina is given by

$$M = \int_{\mathcal{R}} \rho(x, y) \, dA = m \int_{0}^{1} \int_{0}^{x^{2}} x \, dy \, dx.$$

Find M in terms of m.

[5 marks]

The centre of mass of the lamina is given by (X, Y) where

$$X = \frac{1}{M} \int_{\mathcal{R}} x \rho(x, y) dA$$
 and $Y = \frac{1}{M} \int_{\mathcal{R}} y \rho(x, y) dA$.

Show that

$$(X,Y) = (\frac{4}{5}, \frac{1}{3}).$$

[10 marks]