ould answer the S. Section A carrie		${ m HREE}$ questio

SECTION A

1. Given $h=6.62608\times 10^{-34}~{\rm J~s},\, \mu_0=4\pi\times 10^{-7}~{\rm H~m^{-1}},\, c=2.99792\times 10^8~{\rm m~s^{-1}},\, m_e=9.10939\times 10^{-31}~{\rm kg}$ and $e=1.60218\times 10^{-19}~{\rm C},$ find the value of the Bohr radius, $a_0=h^2/(\pi\mu_0c^2m_ee^2)$, in standard form accurate to 5 significant figures.

[5 marks]

2. Simplify

$$\frac{(x^3y^2z)^{\frac{1}{2}}(xy^2z)^{-\frac{3}{2}}}{(yz^2)^{\frac{1}{2}}} \ .$$

[3 marks]

3. Sketch $f(\theta) = \cos \theta$ for $0 \le \theta \le \pi$. On the same diagram sketch $f^{-1}(\theta)$. Evaluate $f^{-1}(0.62543)$. [4 marks]

4. Evaluate, as rational numbers,

(i)
$$1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \dots + \frac{256}{6561} ,$$

(ii)
$$12 + \frac{35}{3} + \frac{34}{3} + 11 + \dots + \frac{26}{3}.$$

[7 marks]

5. Expand and simplify $(a+2b)^5$.

[4 marks]

6. By factorisation, or otherwise, find the roots of the equation

$$3x^2 - 2x - 21 = 0 .$$

[3 marks]

7. Draw the two straight lines

$$x - 2y + 3 = 0$$
, $4x + 3y - 10 = 0$.

Find their point of intersection.

[6 marks]

8. Find the second derivative with respect to x of $\ln(x^2-4)$.

[4 marks]

9. Evaluate

$$\int_2^4 (t^2 - 4t + 4) \, \mathrm{d}t \ .$$

[4 marks]

10. By substituting $u = 25 - x^2$, or otherwise, show that

$$\int_3^4 \frac{x}{25 - x^2} \, \mathrm{d}x = \ln \frac{4}{3} \; .$$

[5 marks]

11. Show that $u(x,t) = \sin(k(x-ct))$, where k and c are constants, satisfies the wave equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} \ .$$

[4 marks]

12. Given the complex numbers $z_1=4-3j$ and $z_2=5+5j$, find $|z_1|, z_2+2z_1$ and $1/z_1+1/\bar{z}_1$. [6 marks]

SECTION B

13. The hyperbolic functions sinh and cosh are defined by

$$\sinh(x) = \frac{1}{2}(e^x - e^{-x}), \qquad \cosh(x) = \frac{1}{2}(e^x + e^{-x}).$$

Find the derivatives of each of these functions, expressing your answer in terms of hyperbolic functions.

Show that

$$\cosh^2(x) - \sinh^2(x) = 1, \qquad \cosh^2(x) + \sinh^2(x) = \cosh(2x).$$

and

$$2\sinh(x)\cosh(x) = \sinh(2x) .$$

[10 marks]

Given that $\cosh(x) = 2$ and x > 0, show that $x = \ln(2 + \sqrt{3})$ and $\cosh(2x) = 7$.

[5 marks]

14 (a). Evaluate the integral

$$\int_0^1 t^2 e^{2t} dt ,$$

expressing your answer in terms of e.

[10 marks]

(b). Evaluate the integral

$$\int_1^\infty \frac{1}{1+x^2} \, \mathrm{d}x \; .$$

[5 marks]

15. Find and classify the stationary points of

$$y = f(x) = x^3 - 2x^2 - 5x + 6$$
.

Find the point of inflection.

[8 marks]

Find the factors of f(x).

Sketch f(x).

[7 marks]

16 (a). Use de Moivre's theorem to find $\sin 3\theta$ and $\cos 3\theta$ in terms of $\sin \theta$ and $\cos \theta$.

Hence deduce that

$$\tan 3\theta = \tan \theta \frac{(3 - \tan^2 \theta)}{(1 - 3\tan^2 \theta)} .$$

[7 marks]

(b). Show that $e^{2k\pi j} = 1$ for integer k.

Express $8\sqrt{3} + 8j$ in modulus-argument form.

Hence find the four roots (in modulus-argument form) of

$$z^4 = 8\sqrt{3} + 8j .$$

Show these roots as points on the Argand diagram.

[8 marks]

17. Sketch the two regions

 $\mathcal{R}_1 \ \{0 \le x \le 2, \ 0 \le y \le x\} \ \text{and} \ \mathcal{R}_2 \ \{2 \le x \le 4, \ 0 \le y \le 4 - x\} \ .$

For a point (x, y) in the combined region $\mathcal{R} = \mathcal{R}_1 + \mathcal{R}_2$,

- (i) show that $0 \le y \le 2$,
- (ii) find the inequalities satisfied by the x-coordinate.

[5 marks]

Evaluate the double integral

$$\int \int_{\mathcal{R}} y(x+y) \, \mathrm{d}x \mathrm{d}y .$$

[10 marks]