MATH161 January 2004 Exam Solutions

All similar to seen exercises except for 6(a), 8(b) and 10(a), which are bookwork.

SECTION A

- 1. (i) Stemplot:
 - 3 | 9 | 3 | 9 represents \$39000. 4 | 002237789 5 | 135556 6 | 122 7 | 2

Unimodal, right skew.

- (i) Have n = 20, so median is observation number 10.5, median = (49 + 51)/2 = 50. LQ is obs. number 5.25, so LQ = $0.75 \times 42 + 0.25 \times 43 = 42.25$. UQ is obs. number 15.75, so UQ = $0.25 \times 55 + 0.75 \times 56 = 55.75$. IQR = 55.75 - 42.25 = 13.5.
- 2. (i) $\sum p(x) = 18k$, so k = 1/18.
 - (ii) P(X > 1) = 13k = 13/18.
 - (iii) $E[X] = k(0 \times 3 + 1 \times 2 + 2 \times 1 + 3 \times 0 + 4 \times 2 + 5 \times 4 + 6 \times 6) = 68k = 68/18 = 34/9.$
 - (iv) $E[X^2] = k(0 \times 3 + 1 \times 2 + 4 \times 1 + 9 \times 0 + 16 \times 2 + 25 \times 4 + 36 \times 6) = 354/18 = 59/3,$ so $Var[X] = (59/3) - (34/9)^2 = 437/81.$
- 3. Network reliability = $P(A)P(B)P(C \cup (D \cap E))P(F)$ = P(A)P(B)(P(C) + P(D)P(E) - P(C)P(D)P(E))P(F)= $0.8 \times 0.8 \times (0.8 + 0.64 - 0.512) \times 0.8 = 0.475136$.
- 4. (i) $P(X = x) = \binom{10}{x} 0.02^x 0.98^{10-x}$.
 - (ii) $E[X] = 10 \times 0.02 = 0.2$.
 - (iii) $P(X=0) = 0.98^{10} = 0.817$.
 - (iv) $P(X > 3) = 1 P(X \le 3) = 1 0.98^{10} 10 \times 0.02 \times 0.98^9 45 \times 0.02^2 \times 0.98^8 120 \times 0.02^3 \times 0.98^7 = 0.00003051$.
- 5. Have $Z = (X 9)/2 \sim N(0, 1)$.
 - (i) P(X > 7) = P(Z > -1) = P(Z < 1) = 0.8413.
 - (ii) P(7 < X < 12) = P(-1 < Z < 1.5) = P(Z < 1.5) P(Z < -1)= P(Z < 1.5) - (1 - P(Z < 1)) = 0.9332 - 1 + 0.8413 = 0.7745.
 - (iii) $P(X < a) = 0.3085 \Rightarrow P(Z < (a 9)/2) = 0.3085$ $\Rightarrow P(Z < (9 - a)/2) = 1 - 0.3085 = 0.6915 \Rightarrow (9 - a)/2 = 0.5 \Rightarrow a = 8.$

SECTION B

6. (a)
$$P(A|B) = P(A \cap B)/P(B)$$
.

(b)
$$L = \text{Lied}, C = \text{Cheated}.$$

(i)
$$P(L) = P(L|C)P(C) + P(L|\bar{C})P(\bar{C}) = 0.3 \times 0.55 + 0.2 \times 0.45 = 0.255.$$

(ii)
$$P(C|L) = P(L|C)P(C)/P(L) = 0.3 \times 0.55/0.255 = 0.647.$$

(c) (i)
$$P(A \cap B) = P(A)P(B)$$

(ii)
$$P(A \cup B) = P(A) + P(B) - P(A)P(B)$$

(iii)
$$P(B \cup C) = P(B) + P(C)$$

(iv)
$$P(B \mid A) = P(B)$$

(v)
$$P(B \mid (C \cap A)) = 0$$

(vi)
$$P(C \cup (A \cap B)) = P(C) + P(A)P(B)$$

7. (a) Under independence, expected values are

	N	L	Н	Total
CHF	131.61	102.24	47.15	281
No	764.39	593.76	273.85	1632
Total	896	696	321	1913

So that

$$X^{2} = \frac{(131.61 - 146)^{2}}{131.61} + \frac{(102.24 - 106)^{2}}{102.24} + \frac{(47.15 - 29)^{2}}{47.15} + \frac{(764.39 - 750)^{2}}{764.39} + \frac{(593.76 - 590)^{2}}{593.76} + \frac{(273.85 - 292)^{2}}{273.85} = 1.573 + 0.139 + 6.988 + 0.271 + 0.024 + 1.203 = 10.197$$

Degrees of freedom = $2 \times 1 = 2$. From tables, $\chi_2^2(0.05) = 5.991$. Value of X^2 is larger than the critical value, so there is evidence at the 5% level to reject the hypothesis of independence between alcohol consumption level and CHF.

(b) For Poisson with mean 1.1, then $P(X = x) = 1.1^x \exp(-1.1)/x!$, so we have

Number of breakdowns	0	1	2	3	≥ 4
Observed frequency	16	22	18	9	5
Expected frequency	23.3	25.6	14.1	5.2	1.8

So goodness-of-fit statistic is

$$X^{2} = \frac{(23.3 - 16)^{2}}{23.3} + \frac{(25.6 - 22)^{2}}{25.6} + \frac{(14.1 - 18)^{2}}{14.1} + \frac{(5.2 - 9)^{2}}{5.2} + \frac{(1.8 - 5)^{2}}{1.8}$$
$$= 2.29 + 0.51 + 1.08 + 2.84 + 5.68 = 12.40$$

Compare with $\chi_4^2(0.05) = 9.488$, value of X^2 is larger than the critical value, so reject the null hypothesis. There is evidence at the 5% level to reject the hypothesis that the data come from a Poisson distribution with mean 1.1.

Estimating mean from the data, have $\bar{x} = (16 \times 0 + 22 \times 1 + 18 \times 2 + 9 \times 3 + 5 \times 4)/70 = 105/70 = 1.5$.

With this mean value, have

Number of breakdowns	0	1	2	3	≥ 4
Observed frequency	16	22	18	9	5
Expected frequency	15.6	23.4	17.6	8.8	4.6

So goodness-of-fit statistic is

$$X^{2} = \frac{(15.6 - 16)^{2}}{15.6} + \frac{(23.4 - 22)^{2}}{23.4} + \frac{(17.6 - 18)^{2}}{17.6} + \frac{(8.8 - 9)^{2}}{8.8} + \frac{(4.6 - 5)^{2}}{4.6}$$
$$= 0.01 + 0.09 + 0.01 + 0.01 + 0.04 = 0.15$$

Compare with $\chi_3^2(0.05) = 7.815$, value of X^2 is smaller than the critical value, so cannot reject the null hypothesis. There is not sufficient evidence at the 5% level to reject the hypothesis that the data come from a Poisson distribution with mean determined from the data.

3

- 8. (a) 95% CI is $\bar{x} \pm 1.96 s / \sqrt{n} = 1.16 \pm 1.96 \times 0.16 / \sqrt{100} = 1.16 \pm 0.03136 = [1.129, 1.191]$. CI excludes 1.2, so there seems to be evidence at the 5% level that the mean response time for rats who have received the drug differs from 1.2.
 - (b) Null hypothesis H_0 is what one believes in the absence of evidence to the contrary, in the example of part (a) above would have $H_0: \mu = 1.2$ where μ is the mean response time for rats who have received the drug.

Alternative hypothesis H_1 is the hypothesis that some effect exists differing from that assumed by H_0 , so in above example $H_1: \mu \neq 1.2$, look for evidence to reject H_0 in favour of H_1 .

Type I error occurs when one incorrectly rejects H_0 in favour of H_1 .

Type II error occurs when one incorrectly fails to reject H_0 in favour of H_1 .

Significance level is the probability of Type I error, given that H_0 is true.

Power is the probability of correctly rejecting H_0 given that H_1 is true.

(c) If $\mu = 1.2$ and $\sigma = 0.16$, then $(\bar{x} - \mu)/(\sigma/\sqrt{n}) = (1.16 - 1.2)/(0.16/10) = -2.5$, so with $Z \sim N(0, 1)$ the *p*-value for the test is

p = P(Z < -2.5) + P(Z > 2.5) = 2(1 - P(Z < 2.5)) = 2(1 - 0.99379) = 0.01242.

Less than 0.05, so at the 5% level reject H_0 . There is evidence that the mean response time for rats who have received the drug differs from 1.2.

9. (a) (i)
$$\int_0^2 f(t)dt = \int_0^2 K(t^3 - 4t^2 + 5t) dt = K[(t^4/4) - (4t^3/3) + (5t^2/2)]_0^2$$

= $K(4 - (32/3) + 10) = (10/3)K$, so that $K = 3/10$.

(ii)
$$E[T] = K \int_0^2 (t^4 - 4t^3 + 5t^2) dt = (3/10) [(t^5/5) - t^4 + (5t^3/3)]_0^2$$

= $(3/10) ((32/5) - 16 + (40/3)) = (3/10)(56/15) = 28/25 = 1.12.$

(iii)
$$E[T^2] = K \int_0^2 (t^5 - 4t^4 + 5t^3) dt = (3/10) [(t^6/6) - (4t^5/5) + (5t^4/4)]_0^2$$

= $(3/10) ((32/3) - (128/5) + 20) = (3/10)(76/15) = 38/25 = 1.52$,
so $Var[T] = (38/25) - (28/25)^2 = 166/625 = 0.2656$.

(b) For one car,

$$\begin{split} P(T \leq 1) &= \int_0^1 K \left(t^3 - 4t^2 + 5t \right) dt = (3/10) \left[(t^4/4) - (4t^3/3) + (5t^2/2) \right]_0^1 \\ &= (3/10) \left((1/4) - (4/3) + (5/2) \right) = (3/10) (17/12) = 17/40 = 0.425, \\ \text{so the probability that none of the 10 cars spends more than 1 hour is} \\ 0.425^{10} &= 0.000192. \end{split}$$

(c) Have from above that $P(T \le t) = (1/40)(3t^4 - 16t^3 + 30t^2)$, so

$$P(T \le 0.5) = (1/40) ((3/16) - 2 + (15/2)) = (1/40) (91/16) = 91/640 = 0.1421875$$

$$P(0.5 < T \le 1) = (17/40) - (91/640) = 181/640 = 0.2828125$$

$$P(1 < T \le 1.5) = (1/40) ((243/16) - 54 + (135/2)) - (17/40)$$

$$= (1/40) (459/16) - (181/640) = (459/640) - (17/40)$$

$$= 187/640 = 0.2921875$$

$$P(1.5 < T \le 2) = 1 - (459/640) = 181/640 = 0.2828125$$

Probability mass function of X is

$$P(X = 0.4) = 91/640,$$

 $P(X = 0.8) = 181/640,$
 $P(X = 1.2) = 187/640,$
 $P(X = 1.6) = 181/640.$

 $E[X] = (0.4 \times 91 + 0.8 \times 181 + 1.2 \times 187 + 1.6 \times 181)/640 = 695.2/640 = £1.08625.$

10. (a) Binomial probabilities

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 $x = 0, 1, 2, ..., n$

so expectation is

$$E[X] = \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$= \sum_{x=1}^{n} x \left(\frac{n!}{x! (n-x)!}\right) p^{x} (1-p)^{n-x}$$

$$= \sum_{x=1}^{n} \left(\frac{n!}{(x-1)! (n-x)!}\right) p^{x} (1-p)^{n-x}$$

$$= np \sum_{x=1}^{n} \left(\frac{(n-1)!}{(x-1)! (n-x)!}\right) p^{x-1} (1-p)^{n-x}$$

$$= np \sum_{y=0}^{n-1} \left(\frac{(n-1)!}{y! (n-1-y)!}\right) p^{y} (1-p)^{n-1-y} \qquad (y=x-1)$$

$$= np \sum_{y=0}^{n-1} P(Y=y) \text{ where } Y \sim \text{Bin}(n-1,p)$$

$$= np \times 1 = np.$$

Variance is np(1-p).

(b) Number of Caesarian births in the sample $X \sim \text{Binomial}(50, 0.22)$, so

$$P(11 \le X \le 14) = {50 \choose 11} 0.22^{11} 0.78^{39} + {50 \choose 12} 0.22^{12} 0.78^{38} + {50 \choose 13} 0.22^{13} 0.78^{37} + {50 \choose 14} 0.22^{14} 0.78^{36}$$

$$= 0.1351 + 0.1238 + 0.1021 + 0.0761 = 0.4372$$

Have $E[X] = 50 \times 0.22 = 11$ and $Variance[X] = 50 \times 0.22 \times 0.78 = 8.58$, so

$$P(11 \le X \le 14) = P(10.5 \le X \le 14.5)$$

$$\approx P\left(\frac{10.5 - 11}{\sqrt{8.58}} \le Z \le \frac{14.5 - 11}{\sqrt{8.58}}\right) \text{ where } Z \sim N(0, 1)$$

$$= P(-0.17 \le Z \le 1.19)$$

$$= P(Z \le 1.19) - P(Z \le -0.17)$$

$$= P(Z \le 1.19) - (1 - P(Z \le 0.17))$$

$$= 0.8830 - 1 + 0.5675$$

$$= 0.4505$$

Approximation seems reasonably good, 0.4505 isn't far from 0.4372. Normal approximation to Binomial is good provided np > 5 and n(1-p) > 5. In this example, np = 11 and n(1-p) = 39, so would expect approximation to be good.