- 1. Give the names of the following (lower case) Greek letters: β , η . Write the lower case Greek letters epsilon and omega. [8 marks]
- 2. Say whether or not each of the following is a mathematical statement. For each that is, state whether it is true, false, or has free variables: if it has free variables, identify them.
 - a) $n^n e^{-n} \sqrt{2\pi n}$.
 - b) For all real numbers x and y, if xy = 0 then x = 0 or y = 0.
 - c) $\exists x \in \mathbb{R}, \ f(x) > 0 \text{ and } g(x) < 0.$

[10 marks]

3. For each of the following sets S, give a function f(n) such that

$$S = \{ f(n) \mid n \in \mathbb{N} \}.$$

(Note that 0 is considered to be a natural number.)

- a) $S = \{1, 3, 5, 7, 9, \ldots\}.$
- b) $S = \{2, 4, 8, 16, 32, 64, \ldots\}.$
- c) $S = \mathbb{Z}$. [12 marks]
- 4. Negate each of the following statements:
 - a) $|f(x) f(y)| < \epsilon$.
 - b) x > 0 or f(x) < 0.
 - c) If $|x| < \frac{1}{10}$ then $|f(x)| < \frac{1}{100}$.
 - d) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, f(y) = x.$ [12 marks]

5.

Definition: Let S be a subset of \mathbb{Z} . Then S is closed under addition if for all $m, n \in S, m + n \in S$.

Working directly from this definition, determine whether or not the following subsets S of \mathbb{Z} are closed under addition. You should justify your answers.

- a) $S = \{3k + 2 \mid k \in \mathbb{Z}\}.$
- b) $S = \{k \in \mathbb{Z} \mid k < -10 \text{ or } k > 10\}.$
- c) $S = \{k \in \mathbb{Z} \mid k > 10\}.$
- d) $S = \{2^k | k \in \mathbb{N}\}.$ [14 marks]

6. Consider the following theorem. You are not expected to understand what it means.

Theorem Let X be a T_2 -space. If X is first countable and X is countably compact, then X is T_3 .

Identify the context, hypothesis, and conclusion of the theorem. State its contrapositive.

What, if anything, does the theorem tell you about a T_2 -space X which is:

- a) Not countably compact?
- b) Countably compact but not T_3 ?
- c) Neither countably compact nor T_3 ?
- d) First countable and countably compact?

[14 marks]

7. Write proofs of the following statements. In parts a) and b), you should work from the definition:

Definition: Let $m, n \in \mathbb{Z}$. Then m divides n, written m|n, if there exists an integer k such that n = km.

- a) Let $a, b, c \in \mathbb{Z}$. If a|b then a|bc.
- b) Let $a, b, c \in \mathbb{Z}$. If a|b and b|c then a|c.
- c) Let $x, y \in \mathbb{R}$. If $x \neq y$ then $(x + y)^2 > 4xy$. [15 marks]
- 8. Determine whether each of the following statements is true or false. Justify your answers briefly.
 - a) $\forall x \in \mathbb{R}, \sin x < 2.$
 - b) $\exists x \in \mathbb{R}, \ x^2 + 1 = 1/2.$
 - c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x < y 1.$
 - d) $\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ e^y = x.$
 - e) $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x + y = 0.$

[15 marks]