- 1. Give the names of the following (lower case) Greek letters: ϵ , ρ . Write the lower case Greek letters beta and theta. [8 marks]
- 2. For each of the following sets S, give a function f(n) such that

$$S = \{ f(n) \mid n \in \mathbb{N} \}.$$

(Note that 0 is considered to be a natural number.)

- a) $S = \{1, 4, 7, 10, 13, 16, \ldots\}.$
- b) $S = \{1, 2, 4, 8, 16, 32, \ldots\}.$
- c) $S = \mathbb{Z}$. [12 marks]
- **3.** Negate each of the following statements:
 - a) x < 0.
 - b) $-1 \le y \le 1$.
 - c) If x < 0 then f(x) < 0.
 - d) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, f(y) = x.$ [12 marks]

4.

Definition: Let f(x) be a (real-valued) function. Then f(x) is injective if for all $x, y \in \mathbb{R}$,

$$f(x) = f(y) \implies x = y.$$

Working directly from this definition, determine whether or not the following functions are injective. You should justify your answers.

a)
$$f(x) = 2x - 3$$
.

b)
$$f(x) = x^2$$
. [10 marks]

5.

Definition: Let R be a relation on a set X. Then R is an equivalence relation if for all $x, y, z \in X$ the following three conditions hold:

- i) x R x.
- ii) If x R y then y R x.
- iii) If x R y and y R z then x R z.

Working directly from this definition, determine whether or not the following relations R on the given sets X are equivalence relations. You should justify your answers.

- a) $X = \mathbb{Z}$, x R y if x + y is even.
- b) $X = \mathbb{R}$, x R y if $x + 1 \ge y$.
- c) $X = \mathbb{R}, x R y \text{ if } \sin x = \sin y.$ [14 marks]
- **6.** Consider the following theorem:

Theorem Let p and a be positive integers. If p is prime and a is not divisible by p, then $a^{p-1} - 1$ is divisible by p.

Identify the context, hypothesis, and conclusion of the theorem. State its contrapositive.

What, if anything, does the theorem tell you about positive integers a and p when

- a) $a^{p-1} 1$ is divisible by p?
- b) $a^{p-1} 1$ is not divisible by p?
- c) Neither a nor $a^{p-1} 1$ is divisible by p?
- d) p is prime and a is divisible by p? [14 marks]
- 7. Write proofs of the following statements. In part a), you should work from the definition:

Definition: Let $n \in \mathbb{Z}$. Then n is even if there exists an integer k such that n = 2k.

- a) Let $m, n \in \mathbb{Z}$. If m is even and n is even then m+n is even.
- b) Let $a, b \in \mathbb{R}$. If $a \neq b$ then $(a + b)^2 > 4ab$.
- c) There do not exist integers m and n with 7m 21n = 5. [15 marks]

- **8.** Determine whether each of the following statements is true or false. Justify your answers briefly.
 - a) $\exists n \in \mathbb{N}, \ n^2 < 5.$
 - b) $\forall x \in \mathbb{R}, \ x^2 < 5.$
 - c) $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z}, n < x.$
 - d) $\exists n \in \mathbb{Z}, \forall x \in \mathbb{R}, n < x.$
 - e) $\exists x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ x < n.$

[15 marks]