- 1. Give the names of the following (lower case) Greek letters: η , σ . Write the lower case Greek letters gamma and psi. [8 marks]
- 2. State whether or not each of the following numbers:

i)
$$-1$$
; ii) 0.5; iii) 2; iv) 5;

is an element of each of the following sets. For each possible combination of one of i)-iv) with one of a)-c), you should either state explicitly that the given number is an element of the given set, or state explicitly that it isn't.

- a) \mathbb{Z} .
- b) $\{x \in \mathbb{R} \mid x^2 < 5\}.$

c)
$$\{n^2 + 1 \mid n \in \mathbb{Z}\}.$$
 [12 marks]

- **3.** Negate each of the following statements:
 - a) $x^2 + y^2 < 1$.
 - b) a = 0 or a > 1.
 - c) If $x \le y$ then $f(x) \ge f(y)$.

d)
$$\forall \epsilon > 0, \exists x \in \mathbb{R}, |f(x)| < \epsilon.$$
 [12 marks]

4.

Definition: Let f(x) be a (real-valued) function. Then f(x) is injective if for all $x, y \in \mathbb{R}$,

$$f(x) = f(y) \implies x = y.$$

Determine whether or not the following functions are injective. You should justify your answers carefully, working directly from the definition.

- a) $f(x) = (x+1)^2$.
- b) f(x) = 4 x.

[10 marks]

5.

Definition: Let R be a relation on \mathbb{R} . Then R is an equivalence relation if for all $x, y, z \in \mathbb{R}$ the following three conditions hold:

- i) x R x.
- ii) If x R y then y R x.
- iii) If x R y and y R z then x R z.

Determine whether or not the following relations R on \mathbb{R} are equivalence relations. You should justify your answers carefully, working directly from the definitions.

- a) x R y if $e^x = e^y$.
- b) x R y if x 1 < y < x + 1.
- c) $x R y \text{ if } x y \in \mathbb{Q}.$

[14 marks]

6. Consider the following theorem. You are not expected to understand what it means.

Theorem Let X be a T_2 -space. If X is first countable and X is countably compact, then X is T_3 .

Identify the context, hypothesis, and conclusion of the theorem. State its contrapositive.

What, if anything, does the theorem tell you about a T_2 -space X which is:

- a) Not first countable?
- b) First countable and not T_3 ?
- c) Neither first countable nor T_3 ?
- d) T_3 and countably compact?

[14 marks]

7. Write proofs of the following statements. In part a), you should work from the definition:

Definition: Let $n \in \mathbb{Z}$. Then n is even if there exists an integer k such that n = 2k.

- a) Let $m, n \in \mathbb{Z}$. If m is even and n is even then m n is even.
- b) Let $a, b, c \in \mathbb{R}$. If ab = ac then a = 0 or b = c.
- c) There do not exist integers m and n with 2m + 4n = 1. [15 marks]

- **8.** Determine whether each of the following statements is true or false. Justify your answers briefly. In part e), $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$.
 - a) $\exists n \in \mathbb{Z}, n^2 > 0.$
 - b) $\forall n \in \mathbb{Z}, n^2 > 0.$
 - c) $\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ x + y = 0.$
 - d) $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x + y = 0.$
 - e) $\forall \epsilon \in \mathbb{R}^+, \exists x \in \mathbb{R}^+, x^2 < \epsilon.$

[15 marks]