SECTION A

- 1. Let z = 3-2i. Find the real and imaginary parts of $1 + \frac{1}{z^2}$. [4 marks]
- 2. Let $z=-\sqrt{3}-i$. Express z in the form $re^{i\theta}$. (As usual, r>0 and θ is real.) Indicate the position of z on an Argand diagram. Use de Moivre's theorem to find the real and imaginary parts of z^6 . [6 marks]
- **3.** Verify that $(7+4i)^2 = 33+56i$. By means of the quadratic formula, or completing the square, solve the quadratic equation

$$z^{2} + (-3 + 2i)z - (7 + 17i) = 0.$$
 [5 marks]

- **4.** Let A, B, C be three points with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ respectively. Write down the following position vectors:
- (i) \mathbf{p} , for P which is on BA, two-thirds of the distance from B to A,
- (ii) \mathbf{q} , for Q which is on CA, two-thirds of the distance from C to A,
- (iii) \mathbf{r} , for R which is the midpoint of BC, and
- (iv) \mathbf{s} , for S which is the midpoint of PQ.

Find a scalar λ such that $\mathbf{s} = \lambda \mathbf{a} + (1 - \lambda)\mathbf{r}$. What can you deduce about the three points A, S and R? [7 marks]

- **5.** Let A = (1, -1, 1), B = (2, 2, 2) and C = (4, 3, -1).
- (i) Find the vectors \overrightarrow{AB} , \overrightarrow{AC} and $\overrightarrow{AB} \times \overrightarrow{AC}$. Write down the area of the triangle ABC. [4 marks]
 - (ii) Find the length of the perpendicular from B to the side AC. [2 marks]
 - (iii) Find an equation for the plane containing the triangle ABC. [3 marks]
- **6.** Find the values of p, q, r such that the curve $y = p + qx + rx^2$ passes through the points (1, 5), (2, 4) and (-1, -5). [5 marks]

7. For each set of vectors (a) and (b) decide, giving reasons, whether the vectors are linearly independent and also whether they span \mathbb{R}^3 .

(a)
$$(4, -1, -4), (-8, 2, 8),$$
 (b) $(4, -1, -4), (8, 1, 1), (-4, 0, 2).$

[5 marks]

8. Find the determinants of the matrices A and B:

$$A = \begin{pmatrix} 1 & 1 & -3 \\ 2 & 4 & 0 \\ 1 & 6 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 0 & 0 \\ 1 & -1 & 0 \\ 6 & 2 & 4 \end{pmatrix}.$$

Write down the determinants of BA^{-1} and B+I, where I is the 3×3 identity matrix. [6 marks]

- **9.** Find the eigenvalues of the matrix $A = \begin{pmatrix} 3 & 5 \\ 1 & -1 \end{pmatrix}$. [3 marks]
- **10.** Let

$$B = \left(\begin{array}{ccc} 2 & -3 & 5 \\ 1 & -2 & 4 \\ 1 & -3 & 2 \end{array}\right).$$

Find a nonzero vector $\mathbf{v} = (x, y, z)^{\top}$ satisfying $(B - I)\mathbf{v} = \mathbf{0}$. Which real number λ is therefore an eigenvalue of B? Write down a corresponding unit length eigenvector. [5 marks]

SECTION B

11. Express the complex number $a = -8\sqrt{2} - 8\sqrt{2}i$ in the form $|a|e^{i\alpha}$. Find all the solutions of the equation $z^4 = a$ in the form $z = re^{i\theta}$ and indicate their positions clearly on an Argand diagram. For one of the solutions, express it in the cartesian form z = x + iy, correct to two decimal places. Explain briefly how to use this solution to obtain the other three solutions in cartesian form.

Write down, with a brief explanation, one solution w to the equation $w^4 = \overline{a}$. [15 marks]

12. Let

$$A = \left(\begin{array}{rrr} 3 & -3 & \alpha \\ -1 & 3 - \alpha & 3 \\ 2 & -1 & 4 \end{array} \right).$$

Show that A is invertible if and only if $\alpha \neq \frac{15}{2}$ and $\alpha \neq 1$. [5 marks] (i)

(ii) Find the inverse of A when $\alpha = 3$.

[5 marks]

(iii) Find a condition which a, b and c must satisfy for the system of equations

$$3x - 3y + z = a$$

 $-x + 2y + 3z = b$
 $2x - y + 4z = c$

to be consistent.

[5 marks]

13. Let L denote the line of intersection of the planes in \mathbb{R}^3 with equations

$$2x - y + 3z = 5$$
 and $x + 4y + z = 6$.

Let L' denote the line joining the points A = (2, 3, -4) and B = (1, 0, 5).

- (i) Find in parametric form an expression for the general point of L. [4 marks]
- (ii) Write down the vector \overrightarrow{AB} and an expression for the general point of L'.
 - (iii) Determine the point at which L' meets the plane

$$x + y + z = 11.$$

[4 marks]

(iv) Decide whether or not L meets L'.

[4 marks]

14. Vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ in \mathbf{R}^4 are defined by

$$\mathbf{v}_1 = (1, 3, 5, -2), \ \mathbf{v}_2 = (2, 2, 1, 0), \ \mathbf{v}_3 = (1, 1, 2, 0), \ \mathbf{v}_4 = (2, 4, 4, -2).$$

- (i) Show that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are linearly dependent. [5 marks]
- (ii) Let S be the span of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. Find linearly independent vectors with the same span S. Extend these linearly independent vectors to a basis of \mathbf{R}^4 . [5 marks]
 - (iii) Show that the vector (2, 8, 1, -6) lies in S. [5 marks]