SECTION A

- 1. Let z = 1 + 4i. Find the real and imaginary parts of $\overline{z} + \frac{2}{z}$. [4 marks]
- **2.** Let $z = 2\sqrt{3} 2i$. Express z in the form $re^{i\theta}$. (As usual, r > 0 and θ is real.) Indicate the position of z on an Argand diagram. Use de Moivre's theorem to find the real and imaginary parts of z^3 . [7 marks]
- **3.** Verify that $(5+i)^2 = 24 + 10i$. By means of the quadratic formula, or completing the square, solve the quadratic equation $z^2 + (1-3i)z 8 4i = 0$. [5 marks]
- **4.** Let A, B, C, D be four points with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ respectively. Write down the position vectors of the mid-point P of AB; the midpoint Q of BC; the mid-point R of CD and the mid-point S of DA. Show that the vector \overrightarrow{PQ} equals the vector \overrightarrow{SR} .
 - **5.** Let A = (-1, 1, 2), B = (0, 2, 4) and C = (-3, 1, 3).
- (i) Find the vectors \overrightarrow{AB} , \overrightarrow{AC} and $\overrightarrow{AB} \times \overrightarrow{AC}$. Write down the area of the triangle ABC. [3 marks]
 - (ii) Find the angle BAC. [3 marks]
 - (iii) Find an equation for the plane containing the triangle ABC. [3 marks]
- **6.** Find the values of p, q, r such that the curve $y = p + qx + rx^2$ passes through the points (0, 2), (1, 0) and (3, 2). [5 marks]
- 7. For each set of vectors (a) and (b) decide, giving reasons, whether the vectors are linearly independent and also whether they span \mathbb{R}^3 .
 - (a) (2,-1,3), (4,-2,5), (b) (2,-1,3), (4,-2,5), (-2,-1,4).

[6 marks]

8. Find the determinants of the matrices A and B:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -3 & -4 \\ 2 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 10 & -12 \\ 0 & 4 & -6 \\ 0 & 0 & -2 \end{pmatrix}.$$

Write down the determinants of BA^{-1} and B+I, where I is the 3×3 identity matrix. [6 marks]

- **9.** Find the eigenvalues of the matrix $A = \begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix}$. [3 marks]
- **10.** Let

$$B = \left(\begin{array}{rrr} 1 & -2 & 1 \\ -1 & 2 & -3 \\ 2 & 2 & 0 \end{array}\right).$$

Find a nonzero vector $\mathbf{v} = (x, y, z)^{\top}$ satisfying $(B - 3I)\mathbf{v} = \mathbf{0}$. Deduce that $\lambda = 3$ is an eigenvalue of B, and write down a corresponding unit length eigenvector. [5 marks]

SECTION B

11. Express the complex number $a=-4\sqrt{2}+4i\sqrt{2}$ in the form $|a|e^{i\alpha}$. Find all the solutions of the equation $z^3=a$ in the form $z=re^{i\theta}$ and indicate their positions clearly on an Argand diagram. For *one* of the solutions, express it in the cartesian form z=x+iy.

Without further calculation indicate clearly on a separate diagram the solutions of the equation $z^3 = \overline{a} = -4\sqrt{2} - 4i\sqrt{2}$. [15 marks]

$$A = \left(\begin{array}{ccc} 2 & 1 & \alpha + 1 \\ -1 & \alpha & 1 \\ 1 & -1 & 3 \end{array} \right).$$

- (i) Show that A is invertible if and only if $\alpha \neq -1$ and $\alpha \neq 7$. [5 marks]
- (ii) Find the inverse of A when $\alpha = 0$. [5 marks]
- (iii) Find a condition which a, b and c must satisfy for the system of equations

$$\begin{array}{rclrcrcr}
2x & + & y & + & 8z & = & a \\
-x & + & 7y & + & z & = & b \\
x & - & y & + & 3z & = & a
\end{array}$$

to be consistent.

[5 marks]

13. Let L denote the line of intersection of the planes in \mathbb{R}^3 with equations

$$x + y - z = 5$$
 and $2x + 3y + 4z = 7$.

Let L' denote the line joining the points A = (1, 2, 3) and B = (0, -2, 4).

- (i) Find in parametric form an expression for the general point of L. [4 marks]
- (ii) Write down the vector \overrightarrow{AB} and an expression for the general point of L'. [3 marks]
 - (iii) Determine the point at which L' meets the plane

$$2x - y + z = 0.$$

[4 marks]

(iv) Decide whether or not L meets L'.

[4 marks]

14. Vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ in \mathbf{R}^4 are defined by

 $\mathbf{v}_1 = (1, 0, -2, 3), \ \mathbf{v}_2 = (3, 1, 0, -2), \ \mathbf{v}_3 = (2, 0, 1, 1), \ \mathbf{v}_4 = (2, 1, -3, 0).$

- (i) Show that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are linearly dependent. [5 marks]
- (ii) Let S be the span of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. Find linearly independent vectors with the same span S. Extend these linearly independent vectors to a basis of \mathbf{R}^4 . [5 marks]
 - (iii) Show that the vector (6, 1, -1, 2) lies in S. [5 marks]