# M101

### M101 EXAMINATION JAN 2001

### Instructions to candidates

Answer all of section A and THREE questions from section B. The marks shown against questions, or parts of questions, indicate their relative weights. The total of marks available in section A is 55.

## SECTION A

- Sketch graph of  $y = |\sin x|$  for  $-\pi \le x \le \pi$ . [3 marks]
- 2. Find the general solution (for real  $\theta$ ) of the equation

$$\cos\theta = \frac{1}{2}.$$

[3 marks]

Find the domain of x such that x satisfies the inequality

$$|x+2| < 3.$$

[2 marks]

**4.** If

$$f(x) = \frac{x}{1 + 2x},$$

find the corresponding inverse function  $f^{-1}(x)$ . Verify that

$$f\left(f^{-1}(x)\right) = x.$$

[5 marks]

Which of the following limits exist? Determine the values of those that do.

$$(a) \quad \lim_{x \to 0} \frac{\tan x}{x}$$

(b) 
$$\lim_{x \to -1} \frac{x^5 + 1}{x + 1}$$

(a) 
$$\lim_{x \to 0} \frac{\tan x}{x}$$
 (b)  $\lim_{x \to -1} \frac{x^5 + 1}{x + 1}$  (c)  $\lim_{x \to 2} \frac{x^2 + 5x + 4}{x - 2}$ .

[6 marks]

Differentiate the following functions with respect to x:

$$(a)$$
  $e^{x^2}$ 

$$(b)$$
  $x^3 \sin x$ 

(a) 
$$e^{x^2}$$
 (b)  $x^3 \sin x$  (c)  $\frac{x^2}{\ln x}$ .

[7 marks]

Find and classify the local extrema of the function

$$f(x) = x^3 - 6x.$$

[6 marks]

8. Define  $\cosh x$  and  $\sinh x$  in terms of  $e^x$  and  $e^{-x}$ . From the definitions, prove that

$$\cosh^2 x - \sinh^2 x = 1.$$

[4 marks]

**9.** Find the equation of the tangent to the curve

$$x^2 + y^2 = 5(y - x)$$

at the point (x, y) = (1, 2).

[6 marks]

Evaluate the following integrals:

$$(a) \quad \int_0^{\frac{\pi}{6}} \sin 3x \, dx$$

(a) 
$$\int_0^{\frac{\pi}{6}} \sin 3x \, dx$$
 (b)  $\int_0^1 \frac{x}{(1+x^2)} \, dx$  (c)  $\int_1^2 \ln x \, dx$ .

[9 marks]

**11.** The curve C has equation  $y = x^4$ ,  $0 \le x \le 1$ . Find the volume of the solid of revolution generated when the finite region enclosed by the curve C, the line x=1 and the x-axis is rotated through  $2\pi$  about the x-axis.

[4 marks]

#### SECTION B

**12.** Let

$$f(x) = \frac{x^2 + x + 1}{(x+2)(x-1)}.$$

Find constants A, B, C such that

$$f(x) \equiv A + \frac{B}{x+2} + \frac{C}{x-1}.$$

- (ii) Prove that f has only one stationary point, and determine its nature. Does f have any points of inflection?
- (iii) Sketch the graph y = f(x), indicating clearly the positions of asymptotes and the stationary point.

13. Suppose  $x_0$  is an approximation to a solution of the equation f(x)=0. By considering the tangent to the graph of y=f(x) at  $x=x_0$ , or otherwise, explain why  $x_1$  may give a better approximation, where  $x_1$  is given by the Newton-Raphson formula:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

By sketching the graphs of  $f(x) = \ln x$  and  $f(x) = \frac{1}{x}$ , demonstrate that the equation

$$x\ln x - 1 = 0\tag{13.1}$$

has one and only one solution. Choosing an appropriate approximate solution  $x_0$  to Eq. (13.1), use the Newton-Raphson method to find  $x_1$ . Use  $x_1$  in turn to find another approximation  $x_2$ . Test whether  $x_2$  is in fact a better approximation to the exact result than  $x_0$ .

[15 marks]

- **14.** (a) Find the arc length of the curve  $y = \frac{4}{3}x^{\frac{3}{2}}$  from x = 0 to x = 2.
- (b) Sketch the curve  $y = \tan x$  from x = 0 to  $x = \frac{\pi}{2}$ . Find the area of the finite region R bounded by the curve  $y = \tan x$ , the line  $x = \frac{\pi}{4}$  and the x-axis. Calculate also the volume of the solid of revolution generated when the region R is rotated through  $2\pi$  radians about the x-axis.

[15 marks]

- **15.** (i) Starting from  $\frac{d}{dx}\sin x = \cos x$  and  $\frac{d}{dx}\cos x = -\sin x$ , show that  $\frac{d}{dx}\tan x = \sec^2 x$  and  $\frac{d}{dx}\sec x = \sec x \tan x$ .
  - (ii) Show that

$$\int_0^{\frac{\pi}{4}} \sec^2 \theta \, d\theta = 1.$$

(iii) Defining  $I_n = \int_0^{\frac{\pi}{4}} \sec^n \theta \, d\theta$ , show by writing  $\sec^{n+2} \theta = \sec^n \theta \cdot \sec^2 \theta$  and integrating by parts, that

$$(n+1)I_{n+2} = nI_n + (\sqrt{2})^n.$$

Verify that this formula reproduces the result of (ii) above, and evaluate

$$I_6 = \int_0^{\frac{\pi}{4}} \sec^6 x \, dx.$$

[15 marks]

**16.**  $S_n$  is defined as follows:

$$S_n = 1 + x + \dots + x^{n-1} = \sum_{r=0}^{n-1} x^r.$$

By writing down  $xS_n$ , or otherwise, show that if  $x \neq 1$  then

$$S_n = \frac{1 - x^n}{1 - x}.$$

Hence justify the statement that the geometric series  $S_{\infty}$  converges to  $(1-x)^{-1}$  for |x| < 1, i.e.

$$\frac{1}{1-x} = 1 + x + x^2 + \dots \quad \text{for} \quad |x| < 1.$$
 (16.1)

Show that the ratio test also leads to the conclusion that this series converges for |x| < 1.

By integrating both sides of the Eq. (16.1), obtain a series for  $\ln(1-x)$ . Give a reason why you would expect this series to also converge for |x| < 1. Verify your conclusion by once again using the ratio test. Discuss briefly the cases  $x = \pm 1$ .

[15 marks]