PAPER CODE NO. MATH 013

THE UNIVERSITY of LIVERPOOL

SEPTEMBER 2003 EXAMINATIONS

Bachelor of Engineering: Year 1 Bachelor of Science: Year 1

MATHEMATICAL METHODS

TIME ALLOWED: Three Hours

INSTRUCTIONS TO CANDIDATES

You may attempt all questions. All answers to Section A and the best THREE answers to Section B will be taken into account.

Numerical answers should be given correct to four places of decimals.

SECTION A

1. Determine the radian measure of the angle $\alpha = -600^{\circ}$, expressed as a rational multiple of π .

Using the formula for sin(A-B), or otherwise, find the exact value for $sin(\alpha)$, without using tables or a calculator.

Hence determine all the angles θ , in the range $\left[-360^{\circ}, 360^{\circ}\right]$ satisfying $\sin(\theta) = \sin(\alpha)$.

[7 marks]

2. Find all the solutions for θ in the range $[0,360^{\circ}]$, which satisfy

$$4\cos^2(\theta) + 6\sin^2(\theta) = 5.$$

[6 marks]

3. Find (to 4 decimal places) the value of x which satisfies

$$\log_e(2x) + \log_e(x^2) = 7.$$

[5marks]

4. Use logarithms to solve the equation

$$6^{3x-2} = 5^x$$
.

[5 marks]

5. Write down the first seven rows of Pascal's triangle. Hence or otherwise find the coefficient of x^8 in the expansion of

$$(2x^2-3)^6$$
.

[6 marks]

6. Sketch the graph of the quadratic function $q(x) = 2x^2 - 3x - 5$. Determine the zeros of q(x) and the position of its minimum.

[8 marks]

7. Express the rational function f(x) in partial fractions, where

$$f(x) = \frac{2x^2 + 2x + 10}{(x+1)(x^2+9)}.$$

[8 marks]

8. Express the complex number

$$z = \frac{3 - 2i}{4 + i}$$

in the form z = a + bi.

Calculate the modulus and argument of z. The argument should be expressed in radian measure. Hence, or otherwise, find the modulus and argument of z^2 . [10 marks]

PAPER CODE PAGE 3 OF 5

CONTINUED

SECTION B

9. Assuming the *Difference Formula* for the cosine function:

$$\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y),$$

show that $\cos(x-\pi/2) = \sin(x)$, for all x.

[2marks]

Express $12\cos(x)+5\sin(x)$ in the form $A\cos(x-\phi)$, where the phase angle ϕ is acute and A>0. The angle should be expressed in radians. Hence solve the equation

$$12\cos(x) + 5\sin(x) = -\frac{13\sqrt{3}}{2}$$
,

where x is an obtuse angle. Comment on the case when the right hand side of this equation is replaced by $-13\sqrt{3}$.

[13 marks]

10. (i) On separate diagrams sketch the curves $y = \log_e(x)$ and $y = 1 - e^{-x}$ for x > 0.

[4 marks]

(ii) Solve the following equations:

$$\log_2(x) = 8$$
, $\log_y(625) = 4$.

[4 marks]

(iii) A swarm of locusts is plaguing a local farming community. The authorities decide to tackle the problem by spraying the fields with a powerful insecticide. The population of locusts N(t), t days after the application of the insecticide is believed to satisfy

$$N = \alpha - 20000 \left(1 - e^{(0.2-k)t}\right),\,$$

where α and k are constants. Initially it was estimated that there were 15000 locusts in the swarm, and after 5 days of insecticide spraying the population was estimated to have fallen by 60%. Use this information to calculate α and k. Estimate the number of days it takes to kill off the swarm entirely.

[7 marks]

PAPER CODE PAGE 4 OF 5 CONTINUED

11. (i) If α and β are the roots of the equation $5x^2 - 9x - 1 = 0$, write down the values of a) $\alpha\beta$, b) $\alpha + \beta$, c) $\alpha^2 + \beta^2$ and d) $(\alpha - \beta)^2$, without determining the values of α and β individually.

[6 marks]

(ii) Given the following cubic polynomial

$$p(x) = -4x^3 + 15x^2 - 8x - 3$$

calculate the values of p(-2), p(-1), p(0), p(1), p(2), p(3) and p(4). Hence find all the roots p(x) = 0, and sketch the curve.

[9 marks]

12. (i) A complex number has modulus 1 and argument $2\pi/3$. Express each of the following complex numbers in the form a+bi:

$$z, z^2, z^3, \frac{1}{z},$$

and plot them (separately) on the Argand diagram.

[10 marks]

(ii) If
$$(x+iy)^3 = (a+ib)$$
 show that $a^2 + b^2 = (x^2 + y^2)^3$.

[5 marks]