PAPER CODE NO. MATH 013

THE UNIVERSITY of LIVERPOOL

SEPTEMBER 2004 EXAMINATIONS

Bachelor of Engineering: Year 1 Bachelor of Science: Year 1

MATHEMATICAL METHODS

TIME ALLOWED: Three Hours

INSTRUCTIONS TO CANDIDATES

You may attempt all questions. All answers to Section A and the best THREE answers to Section B will be taken into account.

Numerical answers should be given correct to four places of decimals.

SECTION A

1. Determine the radian measure of the angle $\alpha = -480^{\circ}$, expressed as a rational multiple of π .

Using the formula for sin(A+B), or otherwise, find the exact value for $sin(\alpha)$, without using tables or a calculator.

Hence determine all the angles θ , in the range $\left[-360^{\circ}, 360^{\circ}\right]$ satisfying $\sin(\theta) = \sin(\alpha)$.

[7 marks]

2. Find all the solutions for θ in the range $[0,180^{\circ}]$, which satisfy

$$2\sec^2(\theta) + 3\tan(\theta) = 1.$$

[6 marks]

3. Find (to 4 decimal places) the value of x which satisfies

$$\log_e(4x) + \log_e(x^3) = 9.$$

[5marks]

4. Use logarithms to solve the equation

$$7^{6-x} = 4^x$$
.

[5 marks]

5. Write down the first seven rows of Pascal's triangle. Hence or otherwise find the coefficient of x^9 in the expansion of

$$(x^3+2)^6$$
.

[6 marks]

6. Sketch the graph of the quadratic function $q(x) = 2x^2 - 13x - 7$. Determine the zeros of q(x) and the position of its minimum.

[8 marks]

7. Express the rational function f(x) in partial fractions, where

$$f(x) = \frac{3x-4}{(x+1)(x+6)}.$$

[8 marks]

CONTINUED

8. Express the complex number

$$z = \frac{1+2i}{8+2i}$$

in the form z = a + bi.

Calculate the modulus and argument of z. The argument should be expressed in radian measure. Hence, or otherwise, find the modulus and argument of z^2 . [10 marks]

PAPER CODE PAGE 3 OF 5

SECTION B

9. Assuming the Difference Formula for the cosine function:

$$\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y),$$

show that $\sin(x-\pi/2) = -\cos(x)$, for all x.

[2marks]

Express $4\sin(x)-3\cos(x)$ in the form $A\sin(x-\phi)$, where the phase angle ϕ is acute and A>0. The angle should be expressed in radians. Hence solve the equation

$$4\sin(x)-3\cos(x)=\frac{5\sqrt{3}}{2}$$
,

where $0 \le x \le \pi$. Comment on the case when the right hand side of this equation is replaced by $5\sqrt{3}$.

[13 marks]

10. (i) On separate diagrams sketch the curves $y = \log_e(x)$ for x > 0 and $y = e^{-x}$ for all x.

[4 marks]

(ii) Solve the following equations:

$$\log_2(x) = 5$$
, $\log_y(243) = 5$.

[4 marks]

(iii) A thermometer is used to measure the temperature of a house. Inside the house the temperature is $20^{0}C$. At time t=0 the thermometer is moved to the outside of the house, where the air temperature is only $5^{0}C$. Three minutes later the reading of the thermometer has dropped to $10^{0}C$. Assuming the temperature of the thermometer, T, drops according to Newton's Law of cooling, one can show that

$$T = 5 + Qe^{-kt}.$$

Use the above information to calculate the two constants Q and k. How long after being put outside does it take the thermometer to register $7^{\circ}C$?

PAPER CODE PAGE 4 OF 5 [7 marks]

11. (i) If α and β are the roots of the equation $-3x^2 + 5x - 3 = 0$, write down the values of a) $\alpha\beta$, b) $\alpha + \beta$, c) $\alpha^2 + \beta^2$ and d) $(\alpha - \beta)^2$, without determining the values of α and β individually.

[6 marks]

(ii) Given the following cubic polynomial

$$p(x)=2x^3+6x^2-4x-4$$
,

calculate the values of p(-4), p(-3), p(-2), p(-1), p(0), p(1) and p(2). Hence find all the roots p(x) = 0, and sketch the curve.

[9 marks]

12. (i) A complex number has modulus 1 and argument $5\pi/6$. Express each of the following complex numbers in the form a+bi:

$$z, z^2, z^3, \frac{1}{z},$$

and plot them (separately) on the Argand diagram.

[10 marks]

(ii) If
$$(x+iy)^2 = a+ib$$
 show that $x^2 - y^2 = a$, $2xy = b$. Hence evaluate $\sqrt{8+6i}$.

[5 marks]