SECTION A

1. Determine the radian measure α_0 of the angle with degree measure 510°, expressed as a rational multiple of π .

Without using tables or a calculator, find the exact value of $\sin(\alpha_0)$. Find all angles α with $\cos(\alpha) = \sin(\alpha_0)$. [8 marks]

- 2. Sketch the graph of $y = \tan(x)$ in the range $-2\pi \le x \le 2\pi$. Determine numerically all solutions of $\tan(x) = 1.45$ in the same range. Your solutions should be expressed in radian measure. [8 marks]
- **3.** You are given the values: ln(2) = 0.693147 and ln(5) = 1.609438, correct to 6 places of decimals. Obtain values of the following

$$\ln(4)$$
, $\ln(10)$, $\ln(2.5)$, $\ln(0.4)$,

without using tables or a calculator, correct to 4 places of decimals.

You should show your numerical working. [7 marks]

4. Determine the set of values of x for which

$$\frac{1}{8} \le 2^x < 64.$$

[3 marks]

5. Construct the first six rows of Pascal's triangle. Hence, or otherwise, find the coefficient of x^{-5} in the expansion of

$$\left(2x^3 - \frac{1}{x^2}\right)^5.$$

[8 marks]

6. Sketch the graph of the quadratic function $q(x) = x^2 - 7x + 12$. Determine the zeros of q(x), and the position of the minimum. [6 marks]

2MP05 2 4

7. Express the rational function f(x) in partial fractions, where

$$f(x) = \frac{3x - 5}{(x - 2)(x + 1)}.$$

[7 marks]

8. Express the complex number

$$z = \frac{3+i}{4-3i}$$

in the form z = a + ib.

Determine numerically the modulus and argument of z. The argument should be given in radian measure. [8 marks]

SECTION B

9. State the Addition and Difference Formulae for the cosine function. Use these formulae to show that

$$\cos^2(x) + \sin^2(x) = 1,$$

and

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1.$$

Deduce that

$$\cos(4x) = 8\cos^4(x) - 8\cos^2(x) + 1.$$

Verify that this identity is satisfied when $x = 0, \frac{\pi}{2}, \frac{\pi}{4}$ and $\frac{\pi}{3}$. [15 marks]

10.(i) Simplify the equation

$$3e^{2\ln(x-4)} + \ln(e^{-7x}) + 2 = 0$$

Solve the simplified equation for x.

- (ii) Use logarithms to solve the equation $2^{5+y} = 7^{2y-1}$ numerically for y.
- (iii) Sketch the graphs of the functions e^x and $2e^{-x}$ on the same diagram, and determine their point of intersection. [15 marks]
- **11.**(i) The quadratic $x^2 + 3x 8$ has roots α, β . Write down the values of $\alpha + \beta$ and $\alpha\beta$.

Without calculating α, β , find the value of

$$\frac{1}{\alpha} + \frac{1}{\beta}$$
.

Hence determine a quadratic whose roots are $\frac{1}{\alpha} - \alpha$ and $\frac{1}{\beta} - \beta$.

- (ii) Sketch the graph of the cubic polynomial $p(x) = 2x^3 9x^2 + 7x + 6$. Find all the zeros of p(x). [15 marks]
- 12.(i) The complex number z_1 has modulus one and argument $\frac{\pi}{6}$. The complex number z_2 has modulus one and argument $\frac{\pi}{3}$. Express each of the following complex numbers in the form a+ib:

$$z_1, z_2, z_1 + z_2, z_1 z_2, \frac{z_1}{z_2},$$

and plot them on an Argand diagram.

(ii) Sketch the graph of the quadratic $q(x) = x^2 + 2x + 2$. Deduce that q(x) must have complex roots. Find these roots and plot them on an Argand diagram. [15 marks]

2MP05 4 4