PAPER CODE NO. **MATH012**

SUMMER 2002 EXAMINATIONS

Bachelor of Engineering: Foundation Year Bachelor of Science: Foundation Year

Bachelor of Science: Year 1 Bachelor of Science: Year 2

VECTORS AND KINEMATICS

TIME ALLOWED : Three Hours

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in Section A and THREE questions from Section B. The total of the marks available on Section A is 55.

SECTION A

- 1. In parallelogram ABCD, the sides AB and AD are given by the vectors \mathbf{u} and \mathbf{v} respectively. The points L and M are the midpoints of the sides AB and BC respectively. Find expressions for the following in terms of \mathbf{u} and \mathbf{v} :
 - (a) \overrightarrow{BM}
 - (b) \overrightarrow{AL}
 - (c) \overrightarrow{LM} .

[4 marks]

- 2. The points P, Q and R have Cartesian coordinates (1,3,0), (2,1,-2) and (3,2,2) respectively where lengths are measured in centimetres. Find:
 - (a) \overrightarrow{PQ}
 - (b) \overrightarrow{QR}
 - (c) the coordinates of the point S such that PQRS is a parallelogram
 - (d) the total length of the sides of parallelogram PQRS in centimetres to the nearest millimetre
 - (e) $\overrightarrow{QP} \cdot \overrightarrow{QR}$
 - (f) all angles of the parallelogram PQRS.

[13 marks]

- 3. Let $\mathbf{u} = -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} \mathbf{j} + \mathbf{k}$ where \mathbf{i} , \mathbf{j} and \mathbf{k} are mutually orthogonal unit vectors.
 - (a) Find $\mathbf{u} + 2\mathbf{v}$ and $\mathbf{u} 2\mathbf{v}$.
 - (b) Find $(2\mathbf{v} \mathbf{u}) \cdot \mathbf{v}$ and $(\mathbf{u} + 2\mathbf{v}) \cdot \mathbf{u}$.
 - (c) Show, by explicitly calculating the vector product, that

$$(\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{u} + 2\mathbf{v}) = 0.$$

[8 marks]

4. The straight line \mathcal{L} has vector equation

$$\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \lambda(2\mathbf{i} + \mathbf{j} + 2\mathbf{k})$$

where \mathbf{i} , \mathbf{j} and \mathbf{k} are unit vectors parallel to the x, y and z axes respectively and $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.

- (a) Find a unit vector parallel to \mathcal{L} .
- (b) Suppose point P has position vector $\mathbf{p} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$. What is the vector from a point R on the line \mathcal{L} to the point P?
- (c) Find the coordinates of the point on the line \mathcal{L} closest to the point P.

[8 marks]

5. Let O be a fixed origin and let \mathbf{i} , \mathbf{j} and \mathbf{k} be constant, mutually orthogonal unit vectors. A particle P moves so that its position vector \mathbf{r} with respect to O at time t is given by

$$\mathbf{r} = (3 - 2t)\mathbf{i} + 2t^2\mathbf{j} - \cos(\pi t/3)\mathbf{k}$$

where t is measured in seconds, distances are measured in metres and $\cos(\pi t/3)$ is evaluated by treating $\pi t/3$ seconds as $\pi t/3$ radians. Find:

- (a) the position of P at time t=3 seconds
- (b) the velocity of P at time t seconds
- (c) the speed of P at t=3 seconds, to the nearest cm/sec
- (d) the acceleration of P at t = 0.

[7 marks]

6. An aircraft sets out from the origin O. The wind velocity relative to the ground is $\mathbf{w} = 50\mathbf{i} \text{ km/hr}$ where \mathbf{i} is a unit vector pointing East.

The aircraft travels at a constant velocity $\mathbf{u} = (-200\mathbf{i} + 160\mathbf{j}) \text{ km/hr}$ relative to the air. Here \mathbf{j} is a unit vector pointing North.

- (a) Give an expression for the velocity **v** of the aircraft relative to the ground.
- (b) Hence write down an expression for the position vector of the aircraft at time t hours.
- (c) Find the time in minutes at which the aircraft has flown 200 km North.
- (d) Find the position vector of the point P the aircraft reaches after it has flown 200 km North.

[7 marks]

7. Evaluate the determinants

[4 marks]

8. Vectors a, b and c are each non-zero, none is parallel to any other, but are such that

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 0$$
.

Use the geometrical interpretation of the triple scalar product to deduce what you can about these three vectors, clearly stating your reasons.

[4 marks]

SECTION B

- 9. The points A, B, C, D form a parallelogram which acts as the base of a box, whose four vertical faces are rectangular. Side AB is parallel to side DC. The top face is the parallelogram PQRS where the corners P, Q, R and S are adjacent to the corners A, B, C and D respectively. The Cartesian coordinates of A, B, D and P are (1, 1, 0), (2, 4, 4), (4, 1, 0) and (1, -3, 3) respectively.
 - (a) Find \overrightarrow{AB} , \overrightarrow{DC} , \overrightarrow{AD} and \overrightarrow{BC} .
 - (b) Show that the coordinates of C are (5,4,4).
 - (c) Find the vector \overrightarrow{AP} , and verify that it is normal to the plane of the base ABCD.
 - (d) Find the coordinates of Q, R and S.
 - (e) Find a vector normal to the plane containing A, C, R and P and hence write down the scalar equation of this plane.

[15 marks]

10. Suppose that the line \mathcal{L}_1 has vector equation

$$\mathbf{r} = \mathbf{i} + \mathbf{j} + 2\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j})$$

and that the line \mathcal{L}_2 has vector equation

$$\mathbf{r} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k} + \mu(3\mathbf{i} + 6\mathbf{j} - 3\mathbf{k})$$

where **i**, **j** and **k** are unit vectors parallel to the coordinate axes Ox, Oy and Oz.

- (a) Write down the coordinates of any two points on the line \mathcal{L}_1 .
- (b) Determine two unit vectors \mathbf{u}_1 and \mathbf{u}_2 which are respectively parallel to the lines \mathcal{L}_1 and \mathcal{L}_2 .
- (c) Show that the angle between the lines is 30 degrees.
- (d) Establish whether the lines do or do not intersect and, if they do, find the coordinates of the point of intersection.

[15 marks]

11. The planes Π_1 and Π_2 have equations

$$3x - y - z = 2 \qquad \text{and} \qquad 2x - y = 4$$

respectively, with respect to Cartesian axes Oxyz.

- (a) Find a normal to each plane.
- (b) Find the angle in degrees between the normals to the planes Π_1 and Π_2 .
- (c) Show that the vector equation of the line \mathcal{L} of intersection of the planes Π_1 and Π_2 can be written in the form

$$\mathbf{r} = -4\mathbf{j} + 2\mathbf{k} + \lambda(\mathbf{i} + 2\mathbf{j} + \mathbf{k}) .$$

- (d) Find the coordinates of the point A which corresponds to $\lambda = 1$.
- (e) Find the Cartesian equation of the plane which is perpendicular to \mathcal{L} and passes through the point A.

[15 marks]

12. The unknowns x, y and z satisfy the simultaneous equations

- (a) where a and n are constants. Write down an augmented matrix corresponding to this system of equations.
- (b) Use elementary row operations to reduce this augmented matrix to echelon form and show that the entries in the final row are (0, 0, -4(a+2), -6(a+2) + n).
- (c) Find a solution for the case with a = -1, n = 0.
- (d) For a = -2 what value of n can give a consistent solution? State with reasons whether the solution is unique. Find the solution.

[15 marks]